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Abstract

In the present work, we develop and assess a compact neural-network
architecture called hereafter the Combinatorial Operation Neural
Network (CombOpNet) which is designed to mitigate the curse of di-
mensionality of Sparse Identification of Nonlinear Dynamics (SINDy).
Within CombOpNet, nonlinear terms in dynamical equations are rep-
resented by a chain of multiplication of univariate functions. These
functions correspond to neurons of a multi-layer neural network which
allows the construction of nonlinear terms in dynamical equations by
employing forward propagation. This way, the CombOpNet can form
and perform summations of all possible combinations of univariate
functions now using far fewer weights, which themselves can recon-
struct the elements in the coefficient matrix of SINDy. If n and p
denote the number of dimensions and order of nonlinearity, respec-
tively, the present method reduces the number of SINDy coefficients
from n

(n+p
n

)
to O(n3 p). This reduction facilitates the scalability of

SINDy, making SINDy applicable to multidimensional systems such
as power grids and climate models. We discuss the implementation
of CombOpNet in Tensorflow, and demonstrate its applicability to
several complex nonlinear dynamical systems with an eye towards
solving high-dimensional problems.

©2025 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

The discovery of predictive dynamical equations that govern the behavior of complex nonlinear phenom-
ena purely from data has been a focal point of mathematical, physical, and engineering modeling [1–3].
With the advances in sparse regression [4], innovative data-driven methods have been discovered, such
as the so-called Sparse Identification of Nonlinear Dynamics or SINDy [5] which are capable of iden-
tifying nonlinear dynamical equations of a pertinent system. Indeed, those data-driven methods are

†Corresponding author.
Email address: sixing@calpoly.edu

ISSN 2475-4811, eISSN 2475-482X/$-see front materials © 2025 The Authors. Published by L&H Scientific Publishing,
LLC. This is an open access article under the CC BY license, (https://creativecommons.org/licenses/by/4.0/).
DOI:10.5890/JVTSD.2025.03.001



2 S. Y. Xing et al / Journal of Vibration Testing and System Dynamics 9(1) (2025) 1–20

pivotal in predicting and unraveling the behavior of complex nonlinear dynamical systems that are
difficult to model from first principles, including, e.g., power grids [6], physicochemical modeling [7],
climate systems [8], and human neurobiology [9], among many others.

In the realm of discovering physical laws from data, the pioneering works in [10] and [11] employed
symbolic regression (SR) combined with genetic algorithms to search for governing equations. The
optimal model therein is identified by leveraging a Pareto front to achieve the balance of accuracy
and model complexity. More recently, SR has been further enhanced by incorporating deep-learning
techniques. For example, the work in [12] employed a neural network (NN) to assist the identification of
intrinsic properties of a system such as symmetries, separability, and compositionality. These properties
were then used to decompose the original problem into lower-dimensional subproblems that are more
trackable to solve. Indeed, the work in [13] integrated reinforcement learning into SR to accelerate the
search of intrinsic properties in the space of small models/symbolic expressions.

In parallel, the breakthrough of compressive sensing [14, 15] has sparked tremendous interest in
utilizing sparse regression for discovering governing equations in dynamical systems. In particular, the
work in [16] formulated the system identification of nonlinear systems as an l1-minimization problem
of coefficients in the series expansion form. A few years later, the SINDy method was introduced
in [5] which adopts a sequential-threshold-least-squares algorithm (abbreviated hereafter as STLSQ) to
promote sparsity. This method is more robust in dealing with noisy data, and its convergence was proved
in [17]. Since then, many variants of SINDy have been developed, such as SINDy with control [18],
and partial differential equations (PDEs) [19, 20] together with the weak SINDy (or WSINDy) that
utilizes the weak formulation of PDEs and eliminates pointwise derivative approximations [21], implicit
SINDy [22,23], Hyper-SINDy [24] for stochastic dynamical systems, and sparse tensor regression method
or “reactive SINDy” [25], along with their applications in many areas and fields. Those include model
predictive control [26], reinforcement learning [27], fluids [28], biological processes [29], Poincaré maps
and identification of slow timescale dynamics [30, 31], and discrete systems [32], to name just a few
among of those applications.

Recent efforts have been concentrated on improving the performance of SINDy from various aspects.
These include the development of new sparse-promoting regularization schemes, such as Sparse Relaxed
Regularized Regression (SR3) [33], reweighted l1-regularized least squares [34], and thresholding with
sensitivity analysis [35] to rank important terms effectively. Strategies for denoising, such as a pri-
ori denoising [36], and bootstrapping [37] have also been explored. Furthermore, leveraging automatic
differentiation [38, 39] has shown a great promise in improving SINDy’s performance. Techniques for
noise quantification, such as Sparse Priors Bayesian Quantification [40] and Sparse Threshold Bayesian
regression [41], have also been investigated. However, most existing examples of SINDy have been lim-
ited to low-dimensional dynamical systems. When applied to ultra high-dimensional nonlinear systems,
SINDy faces the curse of dimensionality, where the size of the coefficient matrix increases exponentially
(see Section 2.1).

Indicatively, Gelß et al [42] attacked this problem by applying tensor decomposition to mitigate
the memory consumption required to store the large coefficient matrix. Additionally, autoencoders [43]
have been integrated into SINDy to project high-dimensional data into a low-dimensional space where
a sparse representation of dynamics can be discovered by the SINDy algorithm. However, the black-box
nature of autoencoders, typically constructed using multilayer perceptrons (MLP), makes it difficult to
interpret the transformation from the original space to the reduced dimension. However, in our present
work, we aim to approach this problem from a different angle by developing a novel neural-network
structure to replace the computationally expensive matrix-based formulation of SINDy.

Indeed, what we pursue herein is not a universal approximator but instead, we aim at accelerating
SINDy through the use of the multi-layer structure of forward networks. The rationale is that with the
proper selection of library functions, the current matrix representation of SINDy leads to a redundant
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(sparse) matrix whose size grows exponentially with increasing dimensions, directly contributing to the
curse of dimensionality. By replacing the matrix-based representation with its NN counterpart, we can
potentially free significant computational resources, thus enabling the algorithm to scale to very high-
dimensional, i.e., multi-dimensional problems. We achieve this goal by leveraging the fact that many
nonlinear terms of dynamical systems can be represented by a chain of multiplication of univariate
functions. We utilize this insight by making these univariate functions the neurons of a multilayer
NN, and employing forward propagation to reconstruct the multiplication chain. This yields a new NN
structure capable of forming and summing all possible combinations of the univariate functions with far
fewer number of weights. These weights can be combined to reconstruct the elements in the coefficient
matrix of SINDy. We term this structure Combinatorial Operation Neural Networks (CombOpNet).

The CombOpNet has two appealing properties: (1) a stacked structure, and (2) path multiplic-
ity. The former property allows for the decoupling of each output dimension while the latter one helps
mitigate the negative effects induced by the cross-coupling of weights shared by different forward paths,
thus providing alternative routes when one path is diminished by a zero weight. With this network,
we successfully reduce the parameters in the coefficient matrix from n

(n+p
n

)
to O(n3 p), a remarkable

reduction that theoretically enables scaling to hundreds or even thousands of dimensions. We have
implemented this network in the framework of Tensorflow, with the adaptation of the STLSQ method.
We have investigated several example systems to demonstrate the potential of CombOpNet for solving
high-dimensional problems.

The remainder of the paper is organized as follows. In Section 2, we review the SINDy algorithm
and its limitations while studying high-dimensional problems. To overcome this limitation, we present
the structure of Combinatorial Operation Neural Networks (CombOpNet), and discuss its properties in
Section 3. The training scheme for CombOpNets is introduced in Section 4 where the STLSQ method
is adapted to fit in the training scheme in Tensorflow. Moreover, we show the method of reconstructing
composite weights of coefficients contained by the governing equations therein. In Section 5, multiple
examples are provided to demonstrate the efficacy of this method. Finally, we conclude this paper and
discuss possible future directions in Section 6.

2 Sparse system identification of nonlinear dynamics (SINDy)

The algorithm of sparse identification of nonlinear dynamics (SINDy) [5] is applied to dynamical systems
modeled by ordinary differential equations (ODEs) in the form of

ẋxx = fff (xxx). (1)

This algorithm aims to identify a parsimonious representation of nonlinear dynamic systems purely
from data. To do so, it introduces a library of candidate functions ΘΘΘ(xxx) such that

fff (xxx)≈ΘΘΘ(((xxx)))ΞΞΞ, (2)

where ΞΞΞ is the coefficient matrix of ΘΘΘ. In addition, ΞΞΞ is expected to be sparse, as SINDy assumes that,
given a sufficient number of candidate functions, fff can be faithfully represented by using only a few
active terms from the library of functions embodied in ΘΘΘ.

The active (nonzero) coefficients of ΞΞΞ are then solved by using an optimization method integrated
with sparse regularization. First, m numbers of discrete points (or values of the state variable at m
temporal points) represented by

XXX =
[
xxx(t1), xxx(t2), · · · , xxx(tm)

]T
(3)

are sampled along a trajectory, together with their respective time derivatives

ẊXX =
[
ẋ(t1), ẋ(t2), · · · , ẋxx(tm)

]T
, (4)
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which can also be approximated by e.g., finite difference or other methods. When noisy data is collected,
denoising techniques [36] may be applied. The data XXX are then used to construct a library of candidate
functions

ΘΘΘ(XXX) =

 | | | | | | | | |
1 XXX XXX2 . . . sin(XXX) cos(XXX) sin(2XXX) cos(2XXX) . . .
| | | | | | | | |

 , (5)

where

XXX2 =


x2

1(t1) x1(t1)x2(t1) . . . x2
2(t1) . . . x2

n(t1)
x2

1(t2) x1(t2)x2(t2) . . . x2
2(t2) . . . x2

n(t2)
...

...
. . .

...
. . .

...
x2

1(tm) x1(tm)x2(tm) . . . x2
2(tm) . . . x2

n(tm)

 . (6)

Substitution of such a dataset in Eqs. (1)-(2) yields

ẊXX = ΘΘΘ(XXX)ΞΞΞ. (7)

At last, a sparse set of coefficients ΞΞΞ that gives the best fit of data is identified by solving a regularized
sparse regression problem formulated as

ΞΞΞ = argminΞΞΞ||ẊXX−ΘΘΘ(((XXX)))ΞΞΞ||2 +R(ΞΞΞ), (8)

where R(ΞΞΞ) is the penalty term that promotes the sparsity of ΞΞΞ. The sparse regression such as LASSO
[44] and STLSQ [5] are commonly selected. The identified ΞΞΞ leads to a parsimonious model that includes
essential terms to represent system dynamics. Further details of this approach can be found in [18].

2.1 Curse of dimensionality

The matrix ΞΞΞ contains coefficients of both linear and nonlinear terms in the identified model. While
many coefficients are zero (yielding sparse matrix representations), the size of ΞΞΞ increases significantly
with the number of dimensions and the order of nonlinearity. This expansion exacerbates the curse of
dimensionality as one scales SINDy for high-dimensional problems.

To illustrate this, we restrict our analysis to polynomials up to the order of p. Herein, we assume
that the dimensions of ODEs are n. The number of candidate functions is equivalent to the number of
monomials (including the constant 1) up to p-th order. This can be formulated as a classical star-and-
bar problem in combinatorics, or distributing n bars to separate p stars. The formula for the number of
monomials is

(n+p
n

)
. As each ODE of the form of Eq. (1) has independent combinations of monomials,

this results in having the total number of elements in ΞΞΞ to be

N = n
(

n+ p
n

)
=

n(n+ p)!
n!p!

. (9)

As depicted in Fig.1, the size of ΞΞΞ blows up with dimensions (number of state variables). This trend
also holds true for the increase in polynomial order. Assuming n≫ p, we obtain

N =
n(n+1)(n+2) . . .(n+ p)

p!
≈O(np+1). (10)

In a similar vein, we conclude that

N =
n(p+1)(p+2) . . .(p+n)

n!
≈O(pn) (11)

holds when p≫ n. Evidently, such an exponential increase of coefficients makes SINDy intractable for
very high-dimensional problems.
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Fig. 1 The number of coefficients in the matrix ΞΞΞ blows up with increasing data dimensions. The highest
polynomial of order p is fixed to 3 respectively.

3 Accelerating SINDy with combinatorial operation neural networks (CombOpNets)

In order to reduce the memory consumption of SINDy, Gelß et al [42] in 2019 proposed using tensor-
train to represent the matrices ΘΘΘ and ΞΞΞ. With this representation, one can establish a one-to-one
correspondence between tensor-train and matrix representations. To reduce the computational cost,
the inversion of the tensor train is then approximated by pseudoinversion (i.e., Moore-Penrose inverse)
based on singular value decomposition (SVD).

Although we seek a similar goal to develop a compact representation of ΞΞΞ, we further inspect the
fundamental assumption of SINDy: the dynamics of a nonlinear system are governed by only a few
dominant terms. In other words, ΞΞΞ is sparse with the majority of elements being zero. This indicates the
redundancy of the matrix representation of ΞΞΞ and inspires us to further reduce the number of weights
(coefficients) by using this property.

We achieve this goal by leveraging the structure of feedforward neural networks (NNs). More specif-
ically, we realize the right-hand side (RHS) of a differential equation through the forward propagation
of NNs. The rationale behind this approach is that the RHS normally takes the superposition form
of nonlinear terms composed by the multiplication of univariate functions. For example, consider a
nonlinear term represented by a p-th order monomial

(x1)
i1(x2)

i2 · · ·(xm)
im , (12)

where i1 + i2 + · · ·+ im = p. Such a monomial can be viewed as a chain of multiplication of first-order
monomials, which can be accomplished through the forward propagation of a feedforward path of a NN.
As shown in Fig.2, we can break the monomial x1xk . . .x2 into the multiplication of p univariate first-
order monomials (e.g., x1 · xk . . . · x2). Each first-order monomial then becomes a neuron (highlighted)
in the feedforward network. The forward propagation along the path connected to such neurons will
reconstruct the p-th order polynomial (we neglect the weights therein for the ease of discussion).

By further adding the shaded neurons representing additional variables and a constant 1 to each
layer, we create a new NN structure. In this NN, each forward path generates a monomial and the
associated weights. By aggregating these monomials at the output layer, we obtain an output containing
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Fig. 2 Neural-network implementation (highlighted path) of the multiplication chain of Eq. (12). The highlighted
path yields a n-th order polynomial x1xk · · ·x2, whose weight is the product of individual weights on the path.
By adding the additional state variables and a constant one (shaded neurons), the forward propagation can
aggregate all possible combinations of the multivariate polynomials up to p-th order at the output.

all possible combinations of such monomials up to the p-th order. Therefore, we name this new network
as the Combinatorial Operation Neural Network, or CombOpNet.

However, it is important to note that the coefficients of the resulting multivariate polynomials
are not fully independent, as each link/synapsis in CombOpNet can be shared by multiple paths.
Nevertheless, since only a few dominant terms are necessary to describe the dynamics, only a small
number of active paths are needed to faithfully represent a system’s dynamics. In Appendix A.1, we
demonstrate that achieving this with CombOpNet is not a demanding task.

3.1 Structure of CombOpNet

We now present and generalize the structure of CombOpNet, (see Fig.3). Besides first-order monomials,
we can assign a candidate function (e.g., constant, polynomial, trigonometric functions) to each neuron,
thus giving

Θi(ζ ) ∈ {1,ζ ,sin(ζ ),sin(2ζ ), . . . ,cos(ζ ),cos(2ζ ), . . .} (13)

where ζ represents the input data of an arbitrary dimension. We define the candidate functions of the
j-th layer as

ΘΘΘ
[ j] = [Θ

[ j]
1 ,Θ

[ j]
2 , . . . ,Θ

[ j]
k ]T . (14)

Therefore, the output of CombOpNet takes the form

N (xxx) = ŷ(xxx) = 111k×1 ···ΘΘΘ[p](xxx)◦·WWW [p−1] · · ·WWW [2] ···ΘΘΘ[2](xxx)◦·WWW [1] ···ΘΘΘ[1](xxx) (15)

where 111k×1 is a k-by-1 identity matrix (output dense layer), WWW [ j] is the weight matrix of the j-th layer,
··· represents matrix multiplication, and ◦· denotes Hadamard (elementwise) product.

Distinct from a multi-layer perceptron (MLP), CombOpNet does not compose the linear combi-
nation of the output of the previous layer to nonlinear activation functions. Instead, it multiplies the
linear combination of the ( j− 1)-th layer’s outputs with candidate functions of the j-th layer, whose
input now comes from the original input data. In the course of forward propagation herein, the candi-
date functions of different layers are multiplied together, resulting in all possible combinations of these
candidate functions being summed at the output. This way, we can significantly reduce the number of
training parameters in SINDy (see Section 3.4).

3.2 Parallel CombOpNets for sparse system identification

To integrate the CombOpNet within the framework of SINDy, we parallelly stack multiple CombopNets,
allocating one for each ODE, as shown in Fig.4. In other words, the result of the i-th neuron in the
output layer is predicted by

ŷi = Ni(xxx), i = 1,2, · · · ,n. (16)
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Fig. 3 The structure of Combinatorial Operation Neural Networks (CombOpsNets). The network has no bias and
the composition of nonlinear activation functions. All neurons are univariate functions. The input is parallelly
fed into the candidate functions of each layer.

Fig. 4 Stacking multiple CombOpNets for sparse identification of nonlinear dynamics (SINDy), each of which is
associated with one output dimension.

This way, we decouple the networks for different output dimensions, avoiding their cross-coupling. We
define the loss function in the form

L =
m

∑
i=1

1
m
||ẋxxi−N (xxxi)||+R(WWW ) (17)

where WWW represents all weight matrices, m stands for the number of samples, R denotes a sparse-
promoting operator, and λ is a scaling factor.

3.3 Comparison of coefficient relations: matrix formulation vs. CombOpNet formulation

How are the coefficients related between the matrix-based formulation and CombOpNet formulation? It
turns out that every CombOpNet has a corresponding matrix form of SINDy. In other words, the weights
of a CombOpNet can be used to reconstruct the weights (coefficients) in the matrix formulation of
SINDy. During this reconstruction, the multiplication of weights along a feedforward path corresponds
to the coefficient of a composite term. As there can have multiple paths leading to the same composite
term, the weights resulting from these paths need to be summed together. For example, the total weight
of a composite candidate function Θi1Θi2 . . .Θip is represented by

W j = ∑
cyc

W [1]
i1i2W

[2]
i2i3 · · ·W

[p−1]
ip−1ip

, (18)

where ∑cyc represents the cyclic sum of indexes i1, i2, . . . , in and the index j is defined as j = ∑
n
k=1 ikzk,

with zk being a prime number in ascending order with k. More specifically, we define zzz = [2,3,5, . . . ].
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(a) (b)

Fig. 5 Comparison of Coefficient Counts: Ξ Matrix Representation in SINDy vs. CombOpNet. (a) Data dimen-
sions n vs. number of coefficients N, for polynomial order p = 3. (b) Polynomial order p vs. number of coefficients
N, for data dimensions n = 10.

This is to ensure the uniqueness of j. At the code implementation level, j can be represented by a
sorted string composed of characters corresponding to the indexes i1, i2, . . . , ip.

Eq. (18) indicates that the CombOpNet constructs a nonlinear mapping between its weights and
the weights (coefficients) by the matrix formulation of SINDy. With this mapping, we can significantly
reduce the number of weights for training, thus improving the algorithm’s efficiency by several orders
of magnitude.

3.4 Weights reduction by CombOpNets

In the discussion that follows next, we restrict ourselves to monomial candidate functions again. We
assume that the dimension of the state variables is n, and the highest polynomial order is p. In addition,
we assume the same number of neurons per layer for simplicity. The number of neurons (including the
candidate function Θ = 1) per layer becomes n+1. Therefore, the total number of trainable weights in
CombOpNet reads

N = n(n+1)2(p−1)≈ O(n3 p), (19)

where (n+1)2 represents the number of weights per layer, and (p−1) is the number of trainable weight
matrices. As N (cubically) increases with the number of state variables and is proportional to the
highest order of monomials (see, Eq. (19)), it is evident that CombOpNets can significantly reduce the
number of weights (coefficients) that need to be determined by an optimization algorithm compared to
the matrix representation of ΞΞΞ.

4 Training scheme

To yield a parsimonious model from the available data, we adopt supervised learning to minimize the
loss function of Eq. (17). The training dataset is generated by uniformly sampling N points along a
trajectory xxx(t), with 0 ≤ t ≤ T . The time derivatives are computed using the vector field of a given
system of ODEs (although they could be estimated by employing finite differences). The trajectory
typically originates from an initial condition near an equilibrium point. Such data can be readily
collected experimentally. The validation dataset is generated by extending the simulation from the
termination point of the training dataset.
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Algorithm 1 Training with hard thresholded pruning.

Initialization: Epoch, n, δ . ▷ n denotes the dimensions, and δ represents the threshold.
Train the first m epochs without threshold.
while Epoch ≤ N do

masks ← generate masks(W, δ ) ▷ If a weight is less than δ , mask it to zero.
W ← pruning weights(W, masks)
pred ← model(inputs) ▷ Forward propagation
loss ← loss fn(outputs, pred)
gradients ← calculate gradients(loss, W)
masked gradients ← get masked gradients(gradients, masks)
optimizer.apply gradients(masked gradients) ▷ Backward propagation
Epoch ← Epoch +1 ▷ Convergence check
for i ← 1 to n do

if is subnet trainable(i) then
if is subnet converged(i) then

freeze subnet(i)
end if

end if
end for

end while

To ensure robust training, we shuffle the training set, thus randomizing the order of data sam-
ples. Subsequently, we divide the training set into multiple mini-batches, with a batch size of 27 =
128. We employ the first-order optimizer, Adam [45], to train the model. The learning rate is set to 0.2
for the first 1000 epochs, then reduced to 0.02 from epoch 1001 to 5000, and further reduced to 0.002
after epoch 5000. The training will abort when the value of the loss function is less than 10−10.

To promote the sparsity of training parameters, we adopt the sequential threshold least squares
(STLSQ) method [5], which will prune the weights less than a fixed threshold to zero. However, as
the trainable variables in ML libraries such as Tensorflow are immutable data structures, individually
zeroing the weights below a threshold during training is not permitted. Therefore, the original STLSQ
has to be adapted in order to utilize the power of such libraries.

This leads us to develop a variant of STLSQ, inspired by the pruning method for Deep Neural
Networks [46]. During training, we apply a binary mask to the weight matrix of each layer. This
mask, having the same shape as the layer’s weight matrix, zeros out the weights below a certain
threshold. This zeroing is achieved through element-wise multiplication with the binary mask. During
backpropagation, we similarly multiply the gradient element-wise with the binary mask. This ensures
that gradients associated with masked weights are eliminated, preventing their participation in the
weight update process. The pseudo code of the training algorithm with such a pruning scheme that
we developed is listed in Algorithm 1. It is important to note that we pretrain the network for a few
epochs without pruning to avoid accidentally removing dominant terms before their weights exceed the
threshold.

Additionally, to accelerate training, we sequentially evaluate the loss value of each network in the
stack. If a subnetwork’s loss value is below a certain threshold, we stop its training by freezing its
trainable weights.

After training, the weights of a CombOpNet need to be transformed to determine the weights of
the composite terms in the parsimonious model using Eq. (18).
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Fig. 6 Evolution of a trajectory in the mean field model. Top left: 3D trajectory. Top right: x evolution. Bottom
left: y evolution. Bottom right: z evolution. Training data (0 < t < 10) and validation data (10 < t < 20). Black
lines represent ground truth; red lines denote CombOpNet predictions.

5 Examples

In this section, we demonstrate the ability of CombOpNet to identify the dynamics of several nonlinear
dynamical systems, ranging from dimension 3 to dimension 15. We adopt the training scheme discussed
in Section 4.

5.1 Mean field model

As our first example, we consider the mean field model of [47] (see, also [5]) that was developed by
the proper orthogonal decomposition (POD) [48] within the context of laminar flows around a circular
cylinder. By choosing the two most energetic POD modes that represent steady-state vortex shedding,
and coupling them with a shift mode that links the transient dynamics to the vortex shedding, one
obtains the model

dx
dt

= µx−ωy−Axz,

dy
dt

= ωx+µy−Ayz,

dz
dt

=−λ (z− x2− y2),

(20)

where x and y represent the two POD-mode states, and z denotes the shift-mode state. The parameter
µ affects the dynamics of the system and it connects with the Reynolds number [5, 47]. It should be
noted that the above system has a quadratic nonlinearity whereas the parameters to be estimated are
µ,A,ω and λ .

To do so, we select 2000 sampling points with sampling length of T = 10 and time-step size of
0.005. The initial condition [2 0 1]T is employed for training the network. For the NN configuration,
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Table 1 True vs estimated parameters in the mean field model. The parameter A in x and y dimensions is trained
separately. The one with the largest error is presented.

Parameter True Estimated

µ 0.2 0.199999973

ω 1.0 0.999999970

A 1.0 1.000000030

λ 1.0 0.999999970

we consider three parallel CombOpNets with 2 layers, and 4 neurons per layer. The final loss value
is 1.41059× 10−14. Our numerical results using CombOpNet are shown in Fig.6. The top left panel
showcases the solution in phase space, whereas the top right as well as bottom left and right panels
depict the temporal evolution of the state variables (see axes labels). Moreover, the solid black lines
correspond to the ground truth whereas the red lines to the predictions stemming from CombOpNet.
It can be discerned from the panels that the CombOpNet accurately predicts the temporal evolution of
the model which in fact asymptotes to a stable periodic orbit (also called periodic vortex shedding [47]).
Moreover, CombOpNet predicts correctly the quadratic order of the polynomial associated with the
nonlinearity as well as the correct parameter values are shown in Table 1, where the estimated values
agree with the exact values within 10−8 accuracy.

5.2 Shimizu-Morioka model

In the region of high Reynolds numbers, the so-called Shimizu-Morioka model

ẋ = Ay,

ẏ = Ax−ay− xz,

ż =−bz+Ax2,

(21)

shows a similar period-doubling bifurcation as in the Lorenz system [49]. We consider the above model
that features a quadratic nonlinearity as a test example of CombOpNet where 50000 sampling points
with sampling length of T = 500 and time-step size of 0.01 were selected upon utilizing a randomly
generated initial condition [0.21166498 −0.44449307 0.19439383]T . Similar to the mean field model, we
consider three parallel networks with 2 layers, and 4 neurons per layer.

Upon training CombOpNet for 10 epochs with 8.67× 10−15 final loss function value and hard
threshold of 0.1, the predicted parameters are shown in Table 2. A perfect agreement can be discerned
from the table between predicted and true parameter values. Similar to the top left panel of Fig.6,
the left and right panels of Fig.7 present the phase space trajectories of the model corresponding to
the ground truth and CombOpNet predictions, respectively. It should be noted that the predicted
trajectories experience the same behavior as the ground truth’s ones. This observation is explored
further in the panels of Fig.8, where the temporal evolution of the state variables is shown. Indeed, in
the panels a direct comparison between ground truth (solid black line) and predictions (solid red line)
is performed. Past t = 500, we perform a validation where CombOpNet predicts quite accurately the
underlying dynamics of Eq. (21).

5.3 Triadic MHD model

Next, we consider a more complicated triad-interaction model in magnetohydrodynamics (MHD), which
is an example in the PySINDy library [50] (originally proposed by Carbone and Veltri [51] in 1992). The
model was developed from an incompressible 2D magnetofluid model subject to the external magnetic
field. By truncating a Fourier expansion of the field variables, Carbone and Veltri derived 6-dimensional
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Table 2 True vs estimated parameters in the Shimizu-Morioka Model. A in each dimension is trained separately.
The one with the maximized error is presented.

Parameter True Estimated

a 0.81 0.80999973

b 0.375 0.37487731

A 1.0 0.99999997

Fig. 7 Evolution of phase trajectories of the Shimizu-Morioka model. Left panel (black): ground truth. Right
panel (red): trajectory of the identified model.

Fig. 8 The time evolution of state variables of the Shimizu-Morioka model. Left: x, middle: y, right: z. The
vertical dash line at t = 500 separates the training (solid line) and validation (dash line) data. Again, the red
represents the trajectory of the estimated model, while the black denotes the ground truth.

system of nonlinear ODEs from the original MHD equation that reads:

ẋ0 =−2νx0 +4(x1x2− x4x5) ,

ẋ1 =−5νx1−7(x0x2− x3x5) ,

ẋ2 =−9νx2 +3(x0x1− x3x4) ,

ẋ3 =−2µx3 +2(x4x1− x2x3) ,

ẋ4 =−5µx4 +σx5 +5(x2x3− x0x5) ,

ẋ5 =−9µx5 +σx4 +9(x3x0− x1x3) ,

(22)
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Table 3 True vs estimated parameters in the MHD model. The constants also match precisely. The parameters
in each dimension are trained independently. Only the parameters with the largest errors are presented in the
table.

Parameter True Estimated

ν 0.0 0.00000000

µ 0.0 0.0000000000

σ 3.0 3.000000000

Fig. 9 Phase trajectories projected in 3D spaces. Top panel (velocity field): x0-x2. Bottom panel (magnetic field):
x3-x5. Left panel: ground truth. Right panel: trajectory predicted by the identified model.

where x0, x1, and x2 correspond to the Fourier amplitudes of a triad of wave vectors of the velocity field,
and x3, x4, and x5 represent the corresponding amplitudes of the magnetic field (see [51]). In addition,
the parameter σ represents external forcing, while ν and µ denote viscosity and magnetic diffusivity,
respectively.

We sample a trajectory of the system originating from a randomly generated initial condition. The
simulation time is T = 50, and we collect 50,000 discrete points with a uniform time step of 0.001. We
use six parallel CombOpNets, each with 2 layers and 7 neurons per layer.

To train the parallel networks, we adopt a hard threshold of 0.15. With 5 epochs of pretraining (no
pruning), the networks converge with a total loss value of 2.05×10−13. This is partly contributed by the
relatively large sampling numbers. With the mini-batch size of 128 (see Sec. 4), 319 stochastic gradient
descents are applied in a single epoch. During training, the constants are treated as unknowns and
are identified as well. Their values are identical to the exact values up to 10−9. This perfect match is
observed in those parameters tabulated in Table 3. The excellent agreement between the ground truth
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Fig. 10 Time response of state variables x0-x5 in the MHD model. The black curve represents the ground truth,
while the red curve shows the estimated trajectory from the identified system. The solid line indicates the training
set, and the dashed line represents the validation set.

(black solid line) and prediction (red solid line) is illustrated in Fig.9, where the top panel shows the
evolution of state variables of the velocity field, and the bottom panel illustrates that of the magnetic
field. In Fig.10, we further extend the time span to validate the prediction of the identified system. It
can be seen that long-term accurate prediction can be achieved by the parallel CombOpNets.

5.4 Lorenz-96 with n = 15

Having studied the four examples above, we are now ready to apply the parallel CombOpNets to
the Lorenz-96 [52] system with higher dimensions. The Lorenz-96 system is a one-dimensional atmo-
spheric model that divides the earth latitude circle into n sectors. The dynamics of the j-th sector is
characterized by

ẋ j = x j−1(Ax j+1−Bx j−2)−Cx j +F, j = 1,2, . . . ,n, (23)

where x−1 = xn−1 and x0 = xn, xn+1 = x1. Herein, the state variable x j represents the temperature of the
j-th sector. The linear terms Cx j and F denote internal dissipation and external constant forcing (e.g.
solar heating), respectively. The quadratic terms simulate advection between two adjacent sectors.

We choose n = 15 so that each sector covers 24 degrees of latitude. As our goal is to validate the
sparse identification algorithm with CombOpNets, we simply use a random initial condition near the
origin. We sample 50,000 points again with a uniform time step 0.001. In other words, the time span
of data is T = 50. Each CombOpNet in the parallel networks is configured to possess 2 layers and
16 neurons per layer. We adopt a hard threshold value of 0.09. We train the parallel networks for 30
epochs, with 5 epochs of pretraining. The final loss value stops at 5.34×10−9.

The identified nonlinear system has identical terms to the original one. The estimated parameters
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Table 4 True vs estimated parameters in the Lorenz-96 model. Note that the parameters in each dimension are
trained independently. The parameters with the largest errors are presented in the table.

Parameter True Estimated

A 1.0 0.99999949

B 1.0 1.00000006

C 1.0 1.0000052

F 8.0 7.99995995

are tabulated in Table 4, precisely aligning with the exact values. Fig.11 presents the phase trajectories
projected to two-dimensional subplanes formed by two adjacent states, where the solid blue curve
represents the trajectory of the original system, while the red dash curve denotes the evolution of
states of the identified system. Perfect agreement between them is observed. Again, to further examine
the ability of extrapolation of CombOpNets, we use the states at the final time in the training set as
the initial condition for the validation set. We rerun numerical simulation for the same duration as the
training set, and compare the results produced by the identified model by CombOpNets, as shown in
Fig.12. It can be seen that the identified model can also nicely match the trajectory of the original
system at least for the same duration, indicating the great accuracy of the identified model.

6 Conclusions and future directions

The development of data-driven methods and their application to timely complex nonlinear systems
have admittedly propelled the efforts forward in understanding complex nonlinear phenomena. Indeed,
the Sparse Identification of Nonlinear Dynamics (SINDy) method has enjoyed success on that regard,
and has sparked a great interest in extending and improving the method. In the present work, we at-
tempt to accelerate SINDy by introducing the compact neural-network (NN) architecture that we name
Combinatorial Operation Neural Network or CombOpNet. The present architecture represents nonlin-
ear terms of a dynamical system as a chain of multiplication of univariate functions that themselves
correspond to neurons of a multi-layer NN. We demonstrate that such a NN allows the construction of
nonlinear terms in dynamical equations by virtue of forward propagations. We argue that CombOpNet
uses far fewer weights, thus making it quite efficient when the dimension of a dynamical system is quite
large. With that in mind, we performed a series of tests of CombOpNet, starting from dynamical sys-
tems of dimension 3, and gradually moving to ones with 6, and 15. In each case example, CombOpNet
predicts quite accurately the dynamics of the pertinent models while demonstrating its efficiency over
SINDy.

The present work opens up new directions of study that we aim to pursue. On the one hand, it
was mentioned that path multiplicity allows for opening alternative paths in CombOpNet when one
or more paths are diminished. This is true when the sparsity assumption is valid although issues arise
when it is not. We thus plan to explore the existence of an upper limit of sparsity that the NN can
feature. On the other hand, the striking feature of CombOpNet applied to high dimensional systems
may open up the possibility of utilizing it to not only discrete lattice systems but also to PDEs as
an alternative data-driven method. To achieve this goal, a new pruning method should be developed.
As hard-threshold pruning can accidentally prune dominant terms before they exceed the threshold
during gradient descent, careful tuning is required in order to adjust the threshold and select the
epochs for pre-training, a task that may become quite challenging when scaling to higher dimensions. In
addition, if the high-dimensional system exhibits distinct forms in different dimensions, this pruning
scheme can become particularly tedious. In this case, a dimension-wise pruning scheme with different
hyperparameters is planned to be considered and integrated in the CombOpNet framework. At last,
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Fig. 11 Phase trajectories of two adjacent state variables in the Lorenz-96 system.

we would like to relay again the central thrust of our present work: CombOpNet is able to accelerate
SINDy. Although we have not evaluated the performance of the network under the presence of noise
at the moment, this important aspect is planned to be studied next. These are directions we plan to
pursue in the future, and results will be reported in forthcoming works.
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Fig. 12 Time response of state variables in the Lorenz-96 system.
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Fig. 13 Path multiplicity of CombOpNet. Multiple paths (highlighted) are associated with all terms except the

constant term (a) and those with the highest orders (d). Path for (a) the constant term, (b) x1, (c) x2
1, and (d)

x3
1.
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Appendix

A.1 Path multiplicity

Due to the scarcity of nonlinear terms, abundant weights in the CombOpNet will eventually diminish.
When a weight becomes zero, all paths containing it will practically depreciate. One might naturally
speculate that this could inadvertently eliminate the path of dominant terms. However, the structure
of CombOpNet can accommodate this issue due to its path multiplicity. More specifically, more than
one path in CombOpNet could lead to the same composite nonlinear term.

We demonstrate this feature through an example with a polynomial order of 3, in Fig.13. Except for
the constant term in Fig.13(a) and the terms with the highest order in Fig.13(d) having unique paths,
the remaining terms (e.g., the highlighted linear ones in Fig.13(b) and the highlighted quadratic ones in
Fig.13(c)) all possess multiple paths. This path multiplicity allows for opening alternative paths when
one or more paths are diminished. The path uniqueness of the highest-order terms can be remedied
by adding one extra layer to increase the highest possible order by one. The reduction of the path
containing all ones will not cause the paths of any other terms to diminish. In general, adding more
layers will increase the number of available paths. We report however that a problem still arises when
the sparsity assumption is no longer valid. The investigation into the upper limit of sparsity that the
neural network can accommodate will be pursued in a forthcoming paper.
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