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ABSTRACT

In this paper, an origami structure of period-1 motions to spiral homoclinic orbits in parameter space is presented for the Rössler system.
The edge folds of the origami structure are generated by the saddle-node bifurcations. For each edge, there are two layers to form the origami
structure. On one layer of the origami structure, there is a pair of period-doubling bifurcations inducing periodic motions from period-1 to
period-2n motions (n = 1, 2, . . . ,∞). On such a layer, the unstable period-1 motion goes to the homoclinic orbits with a mapping eigenvalue
approaching negative infinity. However, on the corresponding adjacent layers, no period-doubling bifurcations exist, and the unstable period-
1 motion goes to the homoclinic orbit with a mapping eigenvalue approaching positive infinity. To determine the origami structure of the
period-1 motions to homoclinic orbits, the implicit map of the Rössler system is developed through the discretization of the corresponding
differential equations. The Poincaré mapping section can be selected arbitrarily. Before construction of the origami structure, the bifurcation
diagram of periodic motions varying with one parameter is developed, and trajectories of stable periodic motions on the bifurcation diagram
to homoclinic orbits are illustrated. Finally, the origami structures of period-1 motions to homoclinic orbits are developed through a few
layers. This study provides the mathematical mechanisms of period-1 motions to homoclinic orbits, which help one better understand the
complexity of periodic motions near the corresponding homoclinic orbit. There are two types of infinitely many homoclinic orbits in the
Rössler system, and the corresponding mapping structures of the homoclinic orbits possess positive and negative infinity large eigenvalues.
Such infinitely many homoclinic orbits are induced through unstable periodic motions with positive and negative eigenvalues accordingly.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131970

A full understanding of dynamics for periodic orbits to homo-
clinic orbits is very significant to determine motion singularity
and complexity in nonlinear dynamical systems. Since 1960, one
tried to qualitatively and quantitively study the mathematical
structures of periodic orbits near homoclinic orbits in three-
dimensional nonlinear systems (e.g., the Lorenz system and the
Rössler system). In the past six decades, indeed, one has a bet-
ter understanding of homoclinic orbit formation in such systems
based on the linearized approximate theory and numerical stud-
ies, but such a problem to be solved is still far away. Thus, the
mathematical structure of periodic motions to homoclinic orbits
should be further studied. In this paper, the origami structure of
period-1 motions to spiral homoclinic orbits is developed semi-
analytically through an implicit mapping method. The origami
structure with infinite layers in parameter space guides periodic

motions to homoclinic orbits with one of eigenvalues going to
positive and negative infinity. The quasi-homoclinic orbits (peri-
odic) near the homoclinic orbits on each layer of the origami
structure are illustrated for better demonstrations of possible
homoclinic orbits.

I. INTRODUCTION

As proposed by Rössler,1,2 consider the Rössler system as

ẋ = −(y+ z),

ẏ = x+ ay,

ż = b+ z(x− c).

(1)
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The system parameters are a, b, c. If c2 − 4ab > 0, the foregoing
system has two equilibriums,

x∗± = (ap±, p±, p±)
T with p± =

−c±
√

c2 − 4ab

2a
. (2)

The equilibrium x∗+ is a saddle. For c2 = 4ab, the two equilibri-
ums merge a critical equilibrium. For c2 < 4ab, the Rössler system
does not have any equilibriums. Such a system has a quadratic
nonlinear term with six linear terms, which is one of the simplest
three-dimensional nonlinear systems. However, the Lorenz system3

has two nonlinear terms plus five linear terms, and chaotic motions
were demonstrated. Near a homoclinic orbit, a denumerable set of
periodic motions exists, which was proved by Shilnikov.4,5 In 1972,
Gavrilov and Shilnikov6 studied a structurally unstable homoclinic
orbit in three-dimensional dynamical systems, which was based on
the local eigenvalue analysis. In 1973, Gavrilov and Shilnikov7 stud-
ied dynamical systems with a structurally unstable homoclinic curve.
Recently, one found that the Lorenz system has complex periodic
motions near the homoclinic orbits and the possible infinite homo-
clinic orbits exist.8–11 Thus, one asked whether the Rössler system has
complex periodic motion near the homoclinic orbits like the Lorenz
system or not. To answer such a question is one of the authors’ pur-
poses in this paper. Thus, the Rössler system will be studied, and the
origami structure of periodic motions to homoclinic orbits will be
developed for a global view of relationship from periodic motions to
homoclinic orbits.

Since 1976, one has tried to dig out the dynamical behaviors of
the Rössler system. In 1982, from the Shilnikov theorem, Arneodo
et al.12 illustrated chaotic behaviors of the Rössler system, and there
might exist infinitely many unstable periodic orbits of saddle-type.
In 1984, Glendinning and Sparrow13 discussed the local and global
behaviors of periodic orbits near homoclinic orbits through the
two-dimensional maps, and such maps were constructed from the
corresponding linearized system and an assumed circular func-
tion for the proposed spiral motion, which are based on numerical
observations. At the same time, Gaspard et al.14 used the similar
ideas to construct the two-dimensional map to determine the bifur-
cation phenomena near homoclinic orbits in bi-parameter space,
and the spiral periodic orbits of the Rössler system were discussed.
Such analysis mainly originated from the Shilnikov local analysis.
In 1985, Gardini15 discussed Hopf bifurcations and period-doubling
transitions in the Rössler system through the local eigenvalue anal-
ysis of equilibrium and numerically demonstrated chaotic attractors
in the Rössler system. Arneodo et al.16 completed the local anal-
ysis to achieve truncated normal forms of nonlinear systems and
used the similar method to construct the similar two-dimensional
map for reduction to the unidimensional map with a limit case.
Through such analysis based on the two-dimensional maps, one still
cannot obtain a global picture of periodic orbits near the homo-
clinic orbits. Thus, in 1994, numerical detection and continuation
of co-dimensional-two homoclinic bifurcations were developed in
Champneys and Kuznetsov.17 Such a method is based on the eigen-
vectors at the hyperbolic equilibrium with the integration constraint
and the homotopy to construct an approximate homoclinic orbit. In
1995, Letellier et al.18 considered a Poincaré section at the equilib-
rium of x = x∗− with positive crossings by increasing x-coordinates

for the Rössler system. Through such a section, one tried to find the
first-return maps to determine unstable periodic motions numer-
ically. Further studies of the Rössler system were reported (e.g.,
Refs. 19–22). Those studies were based on the Poincaré section with
the first-return map and AUTO to determine the periodic motion
near the homoclinic orbits.

In the afore-mentioned studies, the Poincaré section should be
carefully selected for the first-return map, and the used numeri-
cal simulations cannot obtain unstable periodic motions in three-
dimensional nonlinear systems, such as Rössler and Lorenz sys-
tems. In 2015, Luo23,24 developed an implicit mapping method for
stable and unstable periodic motions in nonlinear dynamical sys-
tems. Luo and Guo25 used such an implicit mapping method for
periodic motions in a periodically forced Duffing oscillator. The
semi-analytical results were compared with the analytical solutions
of periodic motions in Luo and Huang.26 To determine unstable and
stable periodic motions in the Rössler system, the implicit mapping
method will be used in this paper. Through such an implicit method,
the Poincaré mapping can be selected arbitrarily. The implicit map-
ping will be developed through the discretization of differential
equations. From a mapping structure, periodic motions will be
determined with a starting section as a Poincaré section. The stabil-
ity and bifurcations of periodic motions will be determined through
the corresponding eigenvalue analysis. From the eigenvalue con-
straints of λ = 1 and λ = −1, the boundary curves varying with
parameters will be determined for saddle-node and period-doubling
bifurcations. Thus, an origami structure of periodic motions to
homoclinic orbits will be developed in the bi-parameter space.

II. EQUILIBRIUM STABILITY AND BIFURCATION

Consider the Rössler system as

ẋ = f(x, p), (3)

where

x = (x1, x2, x3)
T, f = (f1, f2, f3)

T, p = (a, b, c)T (4)

and

f1 = −(y+ z),

f2 = x+ ay,

f3 = b+ z(x− c).

(5)

At the equilibrium x∗±, the variational equation is

1ẋ = Df(x∗±, p)1x, (6)

and the Jacobian matrix is

Df(x∗±, p) =





0 −1 −1
1 a 0
z∗± 0 (x∗±−c)



 . (7)

The stability and bifurcations of the equilibrium are determined by
eigenvalues of the Jacobian matrix; i.e.,

|Df(x∗±, p)− λI| =

∣
∣
∣
∣
∣
∣

−λ −1 −1
1 a− λ 0
z∗± 0 (x∗±−c)− λ

∣
∣
∣
∣
∣
∣

= 0. (8)
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With varying system parameters, the Rössler system has three
cases for the equilibriums.

(i) If c2 < 4ab, no equilibriums exist in the Rössler system.
(ii) For c2 = 4ab, there is one equilibrium given by

x∗± =
(

−
c

2
,−

c

2a
,−

c

2a

)T

. (9)

(iii) For c2 > 4ab, there are two equilibriums as in Eq. (2). If the
parameters a and b are finite, for c→±∞, the two equilibriums
are

x∗− ≈
(

−c,− c
a
,− c

a

)T

x∗+ ≈
(

0+, 0+, 0+
)T = 0+

}

for c→∞ (10)

and

x∗− ≈
(

−c,− c
a
,− c

a

)T

x∗+ ≈
(

0−, 0−, 0−
)T = 0−

}

for c→−∞. (11)

III. CONSTRUCTED PERIODIC MOTIONS

For the Rössler system in Eq. (1), suppose there exists a peri-
odic motion of x(t) = x(t+ T) with period T. Consider a time
interval [t0, t0 + T] uniformly partitioned into N-time intervals of
[tk−1, tk](k = 1, . . . , N) with a time step of h = tk − tk−1. Using a
midpoint discretization scheme for t ∈ [tk−1, tk], a discrete mapping
for period-m motion x(m)(t) is developed as

Pk : x
(m)

k−1 → x
(m)

k ⇒ x
(m)

k = Pkx
(m)

k−1, (12)

where x
(m)

k = x(m)(tk). The implicit algebraic equation for the dis-
crete mapping is given as

gk(x
(m)

k−1, x
(m)

k ; h) = 0, (13)

with

gk1 = x(m)

k − x(m)

k−1 +
1
2
h

(

y(m)

k + y(m)

k−1 + z(m)

k + z(m)

k−1

)

,

gk2 = y(m)

k − y(m)

k−1 −
1
2
h

[(

x(m)

k + x(m)

k−1

)

+ a
(

y(m)

k + y(m)

k−1

)]

, (14)

gk3 = z(m)

k − z(m)

k−1 −
1
4
h

[

4b+
(

z(m)

k + z(m)

k−1

) (

x(m)

k + x(m)

k−1 − 2c
)]

.

Thus, such a mapping is called an implicit mapping. As in Luo,23,24

such a discrete scheme has an accuracy of O(h3). Thus, h < 10−3

should be required for the accuracy of ε = 10−9 for each mapping.
The resultant mapping of a period-m motion is constructed by

P = PmN ◦ PmN−1 ◦ · · · ◦ P1
︸ ︷︷ ︸

mN−actions

: x0 → xmN. (15)

Thus,

x
(m)
N = Px0 = PmN ◦ PmN−1 ◦ · · · ◦ P1x0, (16)

with the mN-implicit algebraic equations as

gk(x
(m)

k−1, x
(m)

k , h) = 0 for k = 1, 2, . . . , mN, (17)

and the periodicity condition is

(ii)

(i)

FIG. 1. Bifurcation tree varying with parameter c for an initial point on the Poincaré
section: (i) initial point x0 and (ii) period T. Black solid curve: stable motion; red
dashed curve: unstable motion. HO, homoclinic orbit; PD, period-doubling bifurca-
tion; SN, saddle-node bifurcation; A, asymmetric motions; S, symmetric motions
(a = 0.35, b = 0.06).

x
(m)
0 = x

(m)
mN , (18)

with the initial conditions on the selected Poincaré section of

y(m)
0 + z(m)

0 = 0. (19)
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TABLE I. Critical parameters of bifurcations of periodic motions (a = 0.35, b = 0.06, N = 1024). ccr →∞ is from a Hopf bifurcation of the equilibrium x∗−, generating a

period-1 motion with (T → 0). The corresponding equilibrium x∗+ = 0+ is a (2:1)-saddle (two stable and one unstable). The layer “L0” will not have period-1 motion that goes

to a homoclinic orbit. SN, saddle-node bifurcation; PD, period-doubling bifurcation.

Bifurcation Layer Critical parameter ccr Motion switching

SN L0 1.6021←∞ P-1 motion layer switching
L1 1.6021→ 41.524 96
L2 6.476 89← 41.524 96
L3 6.476 89→ 17.843 488 8
L4 9.934 915 08← 17.843 48 8
L5 9.934 915 08→ 13.825 705 5
L6 11.420 385 3← 13.825 705 5
...

...
PD L1 2.2818→ 39.302 62 P-1 to P-2 motion

L3 6.545 15→ 17.809 74
L5 9.938 37→ 13.824 87
L7 11.420 480 2→N/A
...

...

The approximated discrete nodes x
(m)∗
k (k = 0, 1, . . . , mN) in

Eqs. (17)–(19) are solved by the Newton–Raphson method. For
m = 1, the period-1 motion is obtained.

To determine the stability of periodic motions, the Jacobian
matrix of the resultant mapping from Eq. (15) is

DP =
[

∂x
(m)
N

∂x
(m)
0

]

(x
(m)∗
0 ,x

(m)∗
1 , ...,x

(m)∗
N )

= DPmNDPmN−1 · · ·DP1, (20)

where

DPk =
[

∂x
(m)

k

∂x
(m)

k−1

]

= −
[

∂gk

∂x
(m)

k

]−1 [

∂gk

∂x
(m)

k−1

]

. (21)

and the partial derivatives of gk from Eq. (17) are given by

∂gk

∂xk−1

=










−1
1

2
h

1

2
h

−
1

2
h −1−

1

2
ah 0

−
1

4
h(zk + zk−1) 0 −1−

1

4
h(xk + xk−1 − 2c)










,

(22)

∂gk

∂xk

=










1
1

2
h

1

2
h

−
1

2
h 1−

1

2
ah 0

−
1

4
h(zk + zk−1) 0 1−

1

4
h(xk + xk−1 − 2c)










,

(23)

∂gk

∂h
=

1

4






2(yk + y+ zk + zk−1)

−2[(xk + xk−1)+ a(yk + yk−1)]

−4b− (zk + zk−1)(xk + xk−1 − 2c)




 . (24)

The stability of the period-m motion is determined through eigen-
value analysis. That is,

|DP− λI| = 0. (25)

(i) The period-1 solution is stable if all eigenvalues of DP (λ1,2,3) are
within the unit circle.

(ii) The period-1 solution is unstable if at least one eigenvalue of
DP (λ1,2,3) is outside of the unit circle.

The bifurcation of periodic motions occurs when one eigen-
value or a pair of complex eigenvalues are on the unit circle.

(i) If λi = 1 with |λj| < 1 (i, j ∈ {1, 2}; i 6= j), the saddle-node
bifurcation (SN) occurs.

(ii) If λi = −1 with |λj| < 1 (i, j ∈ {1, 2}; i 6= j), the period-
doubling bifurcation (PD) occurs.

(iii) If |λi,j| = 1 with |λl| < 1 (λi = λ̄j, l 6= i, j), the Neimark bifur-
cation (NB) occurs.

The DP matrix contains a trivial eigenvalue of λ = 1 for the
autonomous system, which should be dropped.

IV. PERIODIC MOTIONS TO HOMOCLINIC ORBITS

Using the discrete mapping method, the analytical prediction
of periodic motions in the Rössler system will be carried out with a
prescribed accuracy. The discrete mapping in Eq. (4) has a compu-
tational accuracy of ε = O(h3) = 10−9. A time step of h < 5× 10−3

is required for such accuracy through the node number N to control
per period. Consider two system parameters of the Rössler system as

a = 0.35, b = 0.06. (26)

From the above system parameter, the bifurcation tree of
period-1 motions to the homoclinic orbit is developed, and the ini-
tial point x0 on the Poincaré section, varying with parameter c ∈
(0, 50), is presented in Fig. 1. In Fig. 1(i), a bifurcation tree of period-
1 motions to the homoclinic orbit for initial points on the Poincaré
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(i)

(ii)

FIG. 2. Trajectories for periodic motions on the bifurcation tree: (i) stable period-1
motion on the left side of the bifurcation tree and (ii) stable period-1 motion on the
right side of the bifurcation tree (a = 0.35, b = 0.06).

section is presented. The period-1 motion starts from a saddle-node
bifurcation at ccr ≈ ∞, which is the Hopf bifurcation of the equi-
librium. Such a starting periodic motion has a period of T→ 0 and

large rotation speed near x∗− ≈ (−c,− c
a
,− c

a
)

T.

With deceasing parameter c, such an unstable period-1 motion
with at least one eigenvalue greater than +1 arrives to another
saddle-node bifurcation with an eigenvalue of λ = +1. The period-
1 motion returns and becomes stable. With increasing parame-
ter c, the period-1 motion has a period-doubling bifurcation, and
period-1 motion becomes unstable with at least negative eigen-
value less than −1. After period-doubling, the period-2 motion
will appear, which will not be presented herein and will be dis-
cussed in sequel. Such an unstable period-1 motion arrives to
another period-doubling bifurcation. The period-1 motion becomes
stable and continues to a saddle-node bifurcation. The period-1
motion will counterclockwise turn back. Continuously, the period-1
motions will move to another saddle-node bifurcation with deceas-
ing parameter c. Such a counterclockwise spiraling movement of
the bifurcation tree will arrive to the homoclinic orbit. The period
of period-1 motion is computed by T = N× h. For the homoclinic
orbit, the period of periodic motion should be infinite. For such a
bifurcation tree of period-1 motion to a homoclinic orbit, the period
for such a bifurcation tree is presented in Fig. 1(ii). The labeled
numbers are for simulations of period-1 motions: the left and right
stable periodic motions of the bifurcation tree. Once the period T
becomes infinitely large, the homoclinic orbit is obtained. From the
bifurcation tree, there are different layers of periodic motion with
and without period-doubling bifurcations. The critical values for
saddle-node and period-doubling bifurcations for period-1 motions
are listed in Table I.

For comparison, similar period-1 motions are placed in the
same figure. For instance, stable period-1 motions on the left and
right sides of the bifurcation tree are presented for a = 0.35 and
b = 0.06 in Figs. 2(i) and 2(ii), respectively. The initial conditions
are listed in Table II. The chosen values for parameter c are tab-
ulated. The circled numbers are from the bifurcation tree for the
right and left side of the bifurcation tree of period-1 motions. In
Fig. 2(i), three period-1 motions that are on the left side of the bifur-
cation tree are presented. For the periodic motions (No. 1., No. 3,
and No. 5), the slow movement has no cycle, 1.5 cycles, and 2 cycles.
In Fig. 2(ii), three period-1 motions that are on the right side of
the bifurcation tree are presented. For the periodic motions (No. 2.,
No. 4, No. 6), the slow movement has about 0.5, 2.5, and 3 cycles.
The fast movements for three period-1 motions become large with
increasing parameter c.

V. A BI-PARAMETER ORIGAMI STRUCTURE OF

PERIODIC MOTIONS

To determine a system parameter for the critical point of peri-
odic motions, such a system parameter is considered an unknown
variable for a specific eigenvalue λi, which is determined by

(DP− λiI)v
(i) = 0,

∑3

s=1
(v(i)

s )2 = 1,

with v(i) = (v(i)
1 , v(i)

2 , v(i)
3 )

T
,

(27)
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TABLE II. Initial conditions and parameter c of numerical simulations (a = 0.35, b = 0.06).

Number Parameter c Initial conditions

Figure 2(i) 1 2.1 (6.424 854, − 1.471 657, 1.471 656)
3 6.476 895 7 (14.559 265,− 4.388 423, 4.388 423)
5 9.934 916 5 (19.688 519, − 6.014 809, 6.014 809)

Figure 2(ii) 2 40.8 (59.284 701,− 18.173 644, 18.173 643)
4 17.843 488 6 (30.648 243,− 9.676 526, 9.676 526)
6 13.825 704 (25.169 852, − 7.822 456, 7.822 456)

with the corresponding periodic motion determined by

gk(x
(m)

k−1, x
(m)

k , h) = 0 (k = 1, 2, . . . , mN),

x
(m)
0 = x

(m)
mN ,

y(m)
0 + z(m)

0 = 0.

(28)

From the above equations in Eqs. (27) and (28), the param-
eter, periodic solution and eigenvectors are computed. To solve
the above equations, the corresponding Jacobian matrix for the

Newton–Raphson method needs the following derivatives for DP:

∂DP

∂xk

=
k+1
∑

j=k

DPmNDPmN−1 . . . DPj+1
︸ ︷︷ ︸

(mN−j) actions

∂DPj

∂xk

DPj−1DPk−2 . . . DP1
︸ ︷︷ ︸

(j−1) actions

,

(29)
where

∂DPk

∂xk

= −
(

∂gk

∂xk

)−1
[

∂2gk

∂x2
k

(
∂gk

∂xk

)−1
∂gk

∂xk−1

+
∂2gk

∂xk∂xk−1

]

, (30)

∂DPk

∂xk−1

= −
(

∂gk

∂xk

)−1
[

∂2gk

∂xk−1∂xk

(
∂gk

∂xk

)−1
∂gk

∂xk−1

+
∂2gk

∂x2
k−1

]

, (31)

FIG. 3. The origami structure of periodic
motions to homoclinic orbits in the Rössler
system. The layer section area shrinks to
the homoclinic orbit (HO). On the peri-
od-doubling layer: the shaded area for a
stable region; the white area for an unsta-
ble region with a negative eigenvalue (−).
On the no period-doubling layer: the gradi-
ent area for unstable motion with a positive
eigenvalue (+). The edge lines are for
a saddle-node (SN), and the black solid
lines are for period-doubling bifurcation.
All such curves approaching the homo-
clinic orbit (HO) at the pivot point. One of
the eigenvalues of DP approaches pos-
itive or negative infinity near homoclinic
orbits. The periods of periodic motions
approach infinity.
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FIG. 4. Parameter maps of (c, a)(b = 0.06) for period-1 motions on the different
layers layers for overlap for three layers. The saddle-node bifurcations (SN) are
black solid curves. The period-doubling bifurcations (PD) are blue dashed curves.
The equi-eigenvalue curves are red dashed curves. HO: homoclinic orbits.

and

∂2gk

∂x2
k−1

=
∂2gk

∂xk−1∂xk

=






0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 − 1
2
h 0 0 0 − 1

2
h 0 0




 ,

(32)

∂

∂h

∂gk

∂xk

=
∂

∂h

∂gk

∂xk−1

=






0 1
2

1
2

− 1
2

− 1
2
β1 0

− 1
4
(zk + zk−1) 0 − 1

4
(xk + xk−1 − 2r)




 . (33)

If a system parameter a is considered a variable,

∂

∂a

∂gk

∂xk

=
∂

∂a

∂gk

∂xk−1

= diag(0,−h/2, 0). (34)

If a system parameter c is considered a variable,

∂

∂c

∂gk

∂xk

=
∂

∂c

∂gk

∂xk−1

= diag(0, 0, h/2). (35)

For the saddle-node bifurcation of λi = +1, the following
equations are used:

(DP− (+1)I)v(SN) = 0,

∑3

s=1

(

v(SN)
s

)2 = 1,

with v(SN) =
(

v(SN)
1 , v(SN)

2 , v(SN)
3

)T

,

gk(x
(m)

k−1, x
(m)

k , h) = 0 (k = 1, 2, . . . , mN),

x
(m)
0 = x

(m)
mN ,

y(m)
0 + z(m)

0 = 0.

(36)

For the period-doubling bifurcation of λi = −1, the following
equations are used:

(DP− (−1)I)v(PD) = 0,

∑3

s=1

(

v(PD)
s

)2 = 1,

with v(PD) =
(

v(PD)
1 , v(PD)

2 , v(PD)
3

)T

,

gk(x
(m)

k−1, x
(m)

k , h) = 0 (k = 1, 2, . . . , mN),

x
(m)
0 = x

(m)
mN ,

y(m)
0 + z(m)

0 = 0.

(37)

From the bifurcation tree of period-1 motion to the homo-
clinic orbit, the origami structure of periodic motions to homoclinic
orbits in the bi-parameter space is sketched in Fig. 3. The Hopf

FIG. 5. Parameter maps of (c,a) (b = 0.06) for period-1 motions on the different layers for first layer with period-doubling bifurcations: (i) global view, (ii) bottom zoom,
(iii) top zoom. The saddle-node bifurcations (SN) are black solid curves. The period-doubling bifurcations (PD) are blue dashed curves. The equi-eigenvalue curves are red
dashed curves. HO: homoclinic orbits.
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FIG. 6. Parameter maps of (c,a) (b = 0.06) for period-1 motions on the different layers for the second layer without period-doubling bifurcations: (i) global view, (ii) bottom
zoom, (iii) top zoom. The saddle-node bifurcations (SN) are black solid curves. The period-doubling bifurcations (PD) are blue dashed curves. The equi-eigenvalue curves
are red dashed curves. HO: homoclinic orbits.

bifurcation of the equilibrium at x∗− with c→ 0 generates a new
unstable period-1 motion with a period of T→ 0. Such a point
can be called the birth of period-1 motions from such an equi-
librium. Thus, with deceasing parameter c, the period of such a
periodic motion will increase until the first saddle-node bifurca-
tion of the period-1 motion occurs. On such a layer of period-1
motion (L0), the period-1 motion is from the starting saddle-node
period-1 motion to the saddle-node period-1 motion of the first
layer. On the layer (L0), period-1 motion will not go to the homo-
clinic orbit. Thus, the origami structure will start from the first
layer to the homoclinic orbits with infinite layers, as presented
in Fig. 3. On the period-doubling layer, two shaded areas are for
stable period-1 motions. The white area is for unstable period-1
motion with a negative eigenvalue (−). On the no period-doubling
layer, the gradient shaded area is for unstable motion with a pos-
itive eigenvalue (+). The edge lines are for saddle-node (SN), and
the black solid lines are for period-doubling bifurcations. All such

curves approach the homoclinic orbit (HO) at the pivot point. One
of the eigenvalues of DP approaches positive or negative infinity
near homoclinic orbits. The periods of periodic motions approach
infinity.

From the origami structure, for each layer, the saddle-node
bifurcation curves and period-doubling bifurcation curves are devel-
oped in the parameter space of (c, a) from Eqs. (36) and (37),
respectively. In addition, the equi-eigenvalue curves are presented
from Eqs. (27) and (28). For period-1 motions with positive eigen-
values, the maximum equi-eigenvalue curves of period-1 motions
are presented. For periodic motions with negative eigenvalues, the
minimum equi-eigenvalue curves of period-1 motions are pre-
sented. Once the maximum or minimum equi-eigenvalue curves
goes to positive or negative infinity on each layer, the homoclinic
orbits based on the positive and negative eigenvalues are obtained.
The parameter maps in the (c, a)-space is presented for b = 0.06
in Figs. 4–7.

FIG. 7. Parameter maps of (c,a) (b = 0.06) for period-1 motions on the different layers for the third layer with period-doubling bifurcations: (i) global view, (ii) bottom zoom,
(ii) top zoom. The saddle-node bifurcations (SN) are black solid curves. The period-doubling bifurcations (PD) are blue dashed curves. The equi-eigenvalue curves are red
dashed curves. HO: homoclinic orbits.
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FIG. 8. The 3D view of the trajectories for periodic orbits to the approx-
imate homoclinic orbit (b = 0.06) based on the system parameters (c, a)
= (1.307628, 0.3), (5.168186, 0.9), and (7.657304, 1.899) on the first layer of
the bi-parameter origami structure. The approximate homoclinic orbit passes
through the equilibrium point.

In Fig. 4, the global view of the parameter map with multiple
layers is presented. Different layers are depicted through different
colors. The highest tip is close to the homoclinic orbits. To clearly
observe the bifurcation curves on the parameter maps, the parame-
ter map of (c, a) for the first layer with period-doubling bifurcations
is presented in Figs. 5(i)–5(iii). In Fig. 5(i), the global view of the
parameter map for period-1 motion with period-doubling is pre-
sented. The saddle-node bifurcations with λ = 1 are two boundaries
of the parameter map, and period-doubling curves are depicted
through dashed blue curves, which are also labeled with λ = −1.
The minimum equi-eigenvalue curves are depicted through dashed
red curves. It is clearly observed that negative equi-eigenvalues
decrease with a direction to the homoclinic orbit. For clear views,
the bottom and top views of the global parameter map for the
first layer are zoomed in Figs. 5(ii) and 5(iii). The equi-eigenvalue
curves are clearly presented. The parameter map of (c, a) for the
second layer without period-doubling bifurcations is presented in
Figs. 6(i)–6(iii). The global view of the parameter map for period-1

motion is presented in Fig. 6(i). The saddle-node bifurcations with
λ = 1 are two boundaries of the parameter map. The positive equi-
eigenvalue increases with a direction to the homoclinic orbit. The
bottom and top views of the global parameter map for the second
layer are zoomed in Figs. 6(ii) and 6(iii). Similarly, the parameter
map of (c, a) for the third layer with period-doubling bifurcations
is presented in Figs. 7(i)–7(iii). In Fig. 7(i), the global view of
the parameter map for period-1 motion with period-doubling is
presented. The period-doubling boundary is partially out of the
boundaries of the saddle-node bifurcation. The three saddle-node
bifurcation boundaries exist. The minimum equi-eigenvalue curves
are also depicted through dashed red curves. The negative equi-
eigenvalues decrease with a direction to the homoclinic orbit. The
bottom and top views of the global parameter map for the first layer
are zoomed in Figs. 7(ii) and 7(iii). In a similar fashion, one can
develop other parameter maps for others layers until the homoclinic
orbits.

VI. HOMOCLINIC ORBITS ON SPECIFIC LAYERS

From the analytical prediction, periodic orbits and approx-
imated homoclinic orbits in the Rössler system can be obtained
from different layers on the origami structure. From the param-
eter space, periodic orbits to the corresponding approximate
homoclinic orbits are to be presented herein. In the following
plots, the initial conditions are selected on the Poincaré plane of
y+ z = 0.

In Fig. 8, the 3D view of the trajectories of period-1
motions to the approximate homoclinic orbits are presented
with b = 0.06 for (c, a) = (1.307628, 0.3), (5.168186, 0.9), and
(7.657304, 1.899), respectively. The corresponding initial conditions
are listed in Table III. The trajectory of period-1 motions for
(c, a) = (1.307628, 0.3) is very small, which is far away from the
homoclinic orbit. With increasing parameter a, the periodic motion
will approach the homoclinic orbit for (c, a) = (5.168186, 0.9). The
trajectory of such periodic motions becomes large. With further
increasing parameter a, the approximate homoclinic orbit with
the saddle equilibrium is presented for (c, a) = (7.657304, 1.899).
Such an approximate homoclinic orbit with a negative eigenvalue
is clearly observed.

In Fig. 9, the 3D view of the trajectories of period-1 motions
to the approximate homoclinic orbits are presented with b = 0.06
for (c, a) = (23.859380, 0.5), (11.133112, 1.0), and (8.515895, 1.5)
on the second layer, and the corresponding initial conditions are
listed in Table IV. Compared to the other trajectories, as in Fig. 9(i),
the trajectory of the period-1 motion for (c, a) = (23.859380, 0.5)
is very large because c = 23.859380 is large. In addition, the tra-
jectory is far away from the homoclinic orbit. To clearly view the

TABLE III. Initial conditions of numerical simulations (b = 0.06) on the first layer.

Parameter a Parameter c Initial conditions Types

0.3 1.307 628 (5.733 600,− 1.846 462, 1.846 462) Period-1 PO
0.9 5.168 186 (11.712 978,− 3.805 303, 3.805 303) Period-1 PO
1.88 7.657 304 (13.037 757,− 4.050 959, 4.050 959) Period-1 HO
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(i)

(ii)

FIG. 9. The 3D view of the trajectories for periodic orbits to the approx-
imate homoclinic orbit (b = 0.06) based on the system parameters (c, a)
= (23.859380, 0.5), (11.133112, 1.0), and (7.657304, 1.899) on the second
layer of the bi-parameter origami structure: (i) the global view and (ii) the
zoomed view. The approximate homoclinic orbit passes through the equilibrium
point.

FIG. 10. The 3D view of the trajectories for periodic orbits to the approx-
imate homoclinic orbit (b = 0.06) based on the system parameters (c, a)
= (5.454908, 0.3), (10.203527, 0.8), and (9.136153, 1.3) on the third layer of the
bi-parameter origami structure. The approximate homoclinic orbit passes through
the equilibrium point.

homoclinic orbit, the zoomed view is given in Fig. 9(ii). The largest
periodic orbit is removed from the zoomed view. The trajectory of
the period-1 motion for (c, a) = (11.133112, 1.0) is almost close to
the homoclinic orbit. With increasing parameter a, the trajectory
of the approximate homoclinic orbit for (c, a) = (8.515895, 1.5) is
obtained with the saddle equilibrium.

In Fig. 10, the 3D view of the trajectories of period-1
motions to the approximate homoclinic orbit is presented for (c, a)

= (5.454908, 0.3), (10.203527, 0.8), and (9.136153, 1.3) on the third
layer, and the initial conditions are listed in Table V. The trajec-
tory of period-1 motions for (c, a) = (5.454908, 0.3) is far away from
the homoclinic orbit. With increasing parameter a, the periodic
motion for (c, a) = (10.203527, 0.8) is almost close to the homo-
clinic orbit. With further increasing parameter a, the approximate
homoclinic orbit with the saddle equilibrium is obtained for (c, a)

= (9.136153, 1.3). Such an approximate homoclinic orbit has nega-
tive eigenvalues.

TABLE IV. Initial conditions of numerical simulations (b = 0.06) on the second layer.

Parameter a Parameter c Initial conditions Types

0.5 23.859 380 (38.179 980, − 12.123 795, 12.123 795) Period-1 PO
1.0 11.133 112 (20.167 777,− 6.240 415, 6.240 415) Period-1 PO
1.5 8.515 895 (15.568 467,− 4.851 708, 4.851 708) Period-1 HO
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TABLE V. Initial conditions of numerical simulations (b = 0.06) on the third layer.

Parameter a Parameter c Initial conditions Types

0.3 5.454 908 (13.031 081,− 3.881 428, 3.881 428) Period-1 PO
0.8 10.203 527 (19.262 827,− 5.990 117, 5.990 117) Period-1 PO
1.3 9.136 153 (16.812 017,− 5.240 486, 5.240 486) Period-1 HO

VII. CONCLUSIONS

In this paper, the origami structure of period-1 motions to
spiral homoclinic orbits in parameter space was developed for the
Rössler system. Such an origami structure will guide one to find
possible periodic orbits and corresponding homoclinic orbits in the
Rössler system. The origami structure has two edges of each layer,
formed by the saddle-node bifurcations. For the period-1 motion
origami structure, there are two types of layers with and without
a pair of period-doubling bifurcations. In addition, a method for
how to construct the parameter map was presented, and the equi-
eigenvalue curves in the parameter map were developed for each
layer. Such a method is much accurate and better than the Lya-
punov exponent method. The equi-eigenvalue curves are accurate
and global rather than the local and numerically averaging values
in the Lyapunov exponent method. The method for such equi-
eigenvalues can directly detect the behaviors of periodic orbits in
parameter maps. To verify the mentioned methods, the origami
structures of period-1 motion to homoclinic orbits for the Rössler
were developed, and such a study provides the mathematical mech-
anisms of period-1 motions to the homoclinic orbits in the Rössler
system. The infinitely many homoclinic orbits are induced through
unstable periodic motions with positive and negative eigenvalues.
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