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A B S T R A C T

This paper extends the recently developed method of separable Gaussian neural networks (SGNN) to obtain
solutions of the Fokker–Planck–Kolmogorov (FPK) equation in high-dimensional state space. Several challenges
when extending SGNN to high-dimensional state space are addressed including proper definition of domain for
placing Gaussian neurons and region for data sampling, and numerical integration issue of evaluating marginal
probability density functions. Three benchmark nonlinear dynamic systems with increasing complexity and
dimension are examined with the SGNN method. In particular, the steady-state probability density of the
response is obtained with the SGNN method and compared with the results of extensive Monte Carlo
simulations. It should be pointed out that some solutions of high-dimensional FPK equations for nonlinear
dynamic systems would be very difficult to obtain without SGNN.
1. Introduction

Engineering structures and mechanical systems often experience
random excitations including sea waves, airflow, and earthquakes [1].
The most important response to obtain is the probability density func-
tion (PDF), which plays a crucial role in stochastic analysis and relia-
bility assessment. The response PDF of the stochastic nonlinear system
is determined by the Fokker–Planck–Kolmogorov (FPK) equation [2,3].
However, analytical solutions of the FPK equation have been found only
for linear systems and a few strictly conditioned nonlinear systems [4,
5]. Numerical approximate solutions are often pursued in engineering
applications.

Other approximate and numerical approaches for solving the FPK
equation, including equivalent linearization [6–9], equivalent non-
linearization [10–12], stochastic averaging method [13,14], closure
method [15], finite element method [16], finite difference method
[17], path integral method [18–20], the exponential polynomial closure
method for the stationary PDF of nonlinear systems [21], the state–
space-split exponential polynomial closure method for high dimen-
sional nonlinear systems [22], the generalized cell mapping method
[23] and Monte Carlo simulation [24]. All these methods have var-
ious limitations when applied to study transient and stationary PDF
of high-dimensional nonlinear stochastic systems due to the exces-
sive demand on memory and CPU time needed to find the global
solution of the PDF in the high-dimensional state space. The brutal
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force Monte Carlo simulation is the most general method for strongly
nonlinear stochastic systems, and becomes computationally prohibitive
for high-dimensional nonlinear stochastic systems, particularly when
the small probability distribution in the tail region is needed for reli-
ability assessment. This paper presents the separable Gaussian neural
networks (SGNN) method which is promising for obtaining the PDF of
high-dimensional nonlinear stochastic systems.

Since the 1990s, there has been a growing interest in adopting
machine learning methods for solving partial differential equations
including the FPK equation. Artificial neural networks (ANNs) have
been employed as a universal approach for solving partial differen-
tial equations (PDEs) [25–29]. Cybenko demonstrated that an ANN
employing continuous sigmoidal activation functions has the capacity
to approximate continuous functions with arbitrary precision [30]. In
recent years, driven by the rapid advancement of parallel computing
powered by GPUs and automatic differentiation, the application of
multi-layer ANNs, known as the deep learning, has gained popularity
in obtaining solutions of high-dimensional problems [31–35].

Besides multi-layer ANNs, the single-layer radial-basis-function neu-
ral networks equipped with Gaussian neurons (GRBFNN) have also
been validated as effective for analyzing both steady-state and transient
responses [36,37], as well as for studying first passage problems [38].
The localized property of Gaussian functions gives the GRBFNN method
an advantage in capturing highly complex distributions of stochastic
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responses of strongly nonlinear systems. Unfortunately, this also results
in the significant disadvantage of an exponential rise in the number
of neurons as the system dimension increases. In [39], an iterative
method is presented to optimally select the number and location of
Gaussian neurons for GRBFNN. As the dimension of the system grows,
the selection process itself can become time-consuming, while in the
meantime, the number of optimal neurons also rises rapidly.

To improve the computational efficiency of GRBFNN while main-
taining accuracy, Xing and Sun created a feedforward network called
separable Gaussian neural networks (SGNN) [40]. SGNN treats the
neurons of a uni-variate Gaussian function as if it were a hidden layer.
The multi-layer forward propagation structure of SGNN, as compared
to GRBFNN, requires fewer training parameters. It has been found that
SGNN exhibits enhanced trainability and is more adaptable to tun-
ing compared to multi-layer ANNs with ReLU and Sigmoid functions,
and demonstrates superior function approximation capabilities through
extensive numerical examples in high-dimensional space.

When SGNN is applied to high-dimensional systems, it also faces
a number of challenges. This paper aims to develop algorithms to
deal with these challenges. In particular, we develop an approach to
treat the high-dimensional numerical integration when applying SGNN.
Furthermore, to ensure that the solution generated by SGNN remains
within the predefined boundaries, we impose constraints on the mean
and standard deviation of Gaussian neurons. The loss function therefore
consists of the sum of the squared residual of the FPK equation, the
normalization condition, and the boundary condition.

The structure of the paper is as follows. In Section 2, a brief
overview of the FPK equation is provided. Section 3 provides a detailed
description of the SGNN method. The loss function and training process
crucial for solving the FPK equation are also introduced. In Section 4,
three examples of 2D, 4D and 6D systems are studied with the SGNN
method. Monte Carlo simulations (MCS) will be used to assess the
accuracy of the SGNN solution. The paper is concluded in Section 6.

2. Problem statement

Consider the following 𝑑-dimensional stochastic differential equa-
tion (SDE):
𝑑𝑋𝑗

𝑑𝑡
= 𝑔𝑗 (𝐗) +

𝑚
∑

𝑘=1
ℎ𝑗𝑘(𝐗)𝑊𝑘(𝑡), 1 ≤ 𝑗 ≤ 𝑑, (1)

where 𝑔𝑗 (𝐗) and ℎ𝑗𝑘(𝐗) are linear or nonlinear functions of 𝐗. 𝑊𝑗 (𝑡) are
independent Gaussian white noises with zero mean and the correlation
matrix E[𝑊𝑗 (𝑡)𝑊𝑗 (𝑡 − 𝜏)] = 2𝐷𝑗𝛿(𝜏) (𝑗 = 1, 2,… , 𝑚). The PDF 𝑝(𝐱) of the
steady-state response satisfies the reduced FPK equation as follows,

𝐹𝑃𝐾 [𝑝(𝐱)] ≡ −
𝑑
∑

𝑖=1

𝜕[𝑚𝑖(𝐱)𝑝(𝐱)]
𝜕𝑥𝑖

(2)

+ 1
2

𝑑
∑

𝑖=1

𝑑
∑

𝑗=1

𝜕2
[

𝑏𝑖𝑗 (𝐱)𝑝(𝐱)
]

𝜕𝑥𝑖𝜕𝑥𝑗
= 0,

where 𝐱 = [𝑥1, 𝑥2,… , 𝑥𝑑 ]𝑇 ∈ R𝑑 is a 𝑑-dimensional state vector. 𝐹𝑃𝐾 [⋅]
denotes the FPK operator. 𝑚𝑖(𝐱) and 𝑏𝑖𝑗 (𝐱) are the drift and diffusion
terms defined as follows,

𝑚𝑖(𝐱) = 𝑔𝑖(𝐱) +
𝑑
∑

𝑗=1

𝑚
∑

𝑘=1

[

𝐷𝑘ℎ𝑗𝑘(𝐱)
𝜕ℎ𝑖𝑘(𝐱)
𝜕𝑥𝑗

]

, (3)

𝑏𝑖𝑗 (𝐱) =
𝑚
∑

𝑘=1
2𝐷𝑘ℎ𝑖𝑘(𝐱)ℎ𝑗𝑘(𝐱). (4)

The PDF satisfies the following normalization condition,

∫R𝑑
𝑝(𝐱)𝑑𝐱 = 1. (5)

Since Eq. (2) is a homogeneous equation, the normalization offers a
mechanism to avoid the trivial solution in numerical studies.
2

Fig. 1. The structure of RBFNN.

3. The SGNN method

In this section, we first review the RBFNN method for solving
the reduced FPK equation of stochastic nonlinear systems. Next, a
detailed description of the architecture of SGNN will be presented. Sub-
sequently, the loss function for solving the reduced FPK equation and
the training process will be provided. Finally, we will demonstrate how
to obtain the marginal PDFs in the framework of SGNN by projecting
of the PDF solution into an arbitrary subspace.

3.1. Review of the RBFNN method

The RBFNN method has been proven to be effective in the analysis
of stochastic responses, according to a number of recent studies [36–
38]. Assume that the trial solution for the stationary PDF takes the form
of a weighted sum of Gaussian PDFs

�̄�(𝐱,𝐰) =
𝑁𝐺
∑

𝑗=1
𝑤𝑗𝐺𝑗 (𝐱), (6)

where 𝑁𝐺 is the number of neurons. 𝐺𝑗 (𝐱) ≡ 𝐺(𝐱,𝝁𝑗 ,𝜮𝑗 ) is a Gaussian
neuron with the mean 𝝁𝑗 and covariance matrix 𝜮𝑗 defined as

𝐺(𝐱,𝝁𝑗 ,𝜮𝑗 ) =
1

√

(2𝜋)𝑑 det(𝜮𝑗 )
exp

[

−1
2
(𝐱 − 𝝁𝑗 )𝑇𝜮−1

𝑗 (𝐱 − 𝝁𝑗 )
]

. (7)

The RBFNN solution (6) can be regarded as a neural network with
a single hidden layer using the Gaussian activation function, whose
structure is shown in Fig. 1. This shallow neural network has been
proven to possess universal approximation capabilities [41]. As we shall
use the radial form of the Gaussian function, the covariance matrix of
each neuron is assumed to be diagonal such that 𝜮𝑗 = diag[𝜎2𝑗,𝑘].

The Gaussian functions are chosen such that

∫R𝑑
𝐺𝑗 (𝐱)𝑑𝐱 = 1, for all 𝑗, (8)

the normalization condition for the RBFNN solution �̄�(𝐱,𝐰) is reduced
to a constraint on the weights 𝑤𝑗 as,

𝑁𝐺
∑

𝑗=1
𝑤𝑗 = 1. (9)

We substitute the solution in Eqs. (6) to (2), and obtain the error of
the equation as

𝑒(𝐱,𝐰) = −
𝑑
∑ 𝜕 [𝑚𝑖(𝐱)�̄�(𝐱,𝐰)] (10)

𝑖=1 𝜕𝑥𝑖
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c

+
𝑑
∑

𝑖=1

𝑑
∑

𝑗=1

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

[ 𝑏𝑖𝑗 (𝐱)
2

�̄�(𝐱,𝐰)
]

≡
𝑁𝐺
∑

𝑘=1
𝑠𝑘(𝐱)𝑤𝑘

where 𝐰 = [𝑤1, 𝑤2,… , 𝑤𝑁𝐺
]𝑇 , and

𝑠𝑘(𝐱) = −
𝑑
∑

𝑖=1

𝜕
𝜕𝑥𝑖

[𝑚𝑖(𝐱)𝐺𝑘(𝐱)]

+
𝑑
∑

𝑖=1

𝑑
∑

𝑗=1

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

[ 𝑏𝑖𝑗 (𝐱)
2

𝐺𝑘(𝐱)
]

. (11)

To obtain the solution to the FPK equation that satisfies the nor-
malization condition (9), we introduce a Lagrange multiplier 𝜆 and the
total loss function is defined as,

𝐽 (𝐰, 𝜆) = 1
2

𝑁𝑠
∑

𝑖=1
𝑒2(𝐱𝑖,𝐰) + 𝜆

(𝑁𝐺
∑

𝑗=1
𝑤𝑗 − 1

)

, (12)

where 𝑁𝑠 is the number of sampled points 𝐱𝑖. The expression (12)
serves as the loss function, which can be minimized with respect to
the training parameters for the RBFNN.

In some previous studies on the RBFNN method for solving FPK
equations, the means and standard deviations are kept as constants
[36–38]. Usually, the domain of interest is discretized into uniform
grids. The grids are the mean locations of Gaussian neurons while the
standard deviation is set equal to the grid size. When the means 𝝁 and
standard deviations 𝜮 are fixed, the minimization of the loss function
(12) leads to a set of linear algebraic equations to determine the optimal
weight coefficients 𝐰.

The means and standard deviations can be considered as trainable
parameters. Discretization of the computational domain gives initial
values of means and standard deviations. They are updated in the gra-
dient descent search for minimal loss function (12). Since the RBFNN
method works with the discretized computational domain, it becomes
computationally intensive for higher-dimensional systems.

3.2. Architecture of SGNN

The 𝑑-variate Gaussian radial basis function is separable and can be
expressed as a product of multiple uni-variate Gaussian functions as,

𝐺(𝐱,𝝁𝑗 ,𝜮𝑗 ) =
𝑑
∏

𝑘=1
𝑔(𝑥𝑘, 𝜇𝑗,𝑘, 𝜎𝑗,𝑘), (13)

𝑔(𝑥𝑘, 𝜇𝑗,𝑘, 𝜎𝑗,𝑘) =
1

√

2𝜋𝜎𝑗,𝑘
exp

[

− 1
2𝜎2𝑗,𝑘

(𝑥𝑘 − 𝜇𝑗,𝑘)2
]

, (14)

where 𝜇𝑗,𝑘 is the 𝑘th component of the vector 𝝁𝑗 and 𝜎𝑗,𝑘 is the 𝑘th
omponent of the diagonal matrix 𝜮𝑗 . This chain of multiplications

in Eq. (13) is viewed as the forward propagation network with 𝑑 layers,
each consisting of a single uni-variate Gaussian neuron of one variable
𝑥𝑘. The structure of the separable Gaussian neural network (SGNN) is
shown in Fig. 2.

Let �̄�(𝐱,𝐰) denote the output of SGNN, i.e. the PDF solution of the
FPK equation. 𝐻𝑘 = [ℎ𝑘1 , ℎ

𝑘
2 ,… , ℎ𝑘𝑚𝑘

] represents the output of the 𝑘th
hidden layer and 𝑚𝑘 is the number of neurons in the 𝑘th hidden layer.
𝐖𝑘 = [𝑤𝑘

𝑖𝑗 ] where 𝑤𝑘
𝑖𝑗 represents the weight from the 𝑖th neuron of 𝑘th

layer to the 𝑗th neuron of the (𝑘 + 1)th layer. Then, the output can be
written in the feedforward manner as,

ℎ1𝑗 = 𝑔(𝑥1, 𝜇𝑗,1, 𝜎𝑗,1) (15)

ℎ𝑘𝑗 =

[𝑚𝑘−1
∑

𝑖=1
𝑤𝑘−1

𝑖𝑗 ℎ𝑘−1𝑖

]

𝑔(𝑥𝑘, 𝜇𝑗,𝑘, 𝜎𝑗,𝑘), 𝑘 = 2,… , 𝑑 (16)

�̄�(𝐱,𝐰) =
𝑚𝑑
∑

𝑖=1
𝑤𝑑

𝑖1ℎ
𝑘−1
𝑖

=

[ 𝑚1
∑

𝑚2
∑

…
𝑚𝑑
∑

𝑤𝑑
𝑖𝑑1

(𝑑−1
∏

𝑤𝑘
𝑖𝑘𝑖𝑘+1

)] 𝑑
∏

𝑔(𝑥𝑘, 𝜇𝑖𝑘 ,𝑘, 𝜎𝑖𝑘 ,𝑘)
3

𝑖1=1 𝑖2=1 𝑖𝑑=1 𝑘=1 𝑘=1
=
𝑁𝐺
∑

𝑗=1
�̂�𝑗𝐺(𝐱,𝝁𝑗 ,𝜮𝑗 ), (17)

where 𝑁𝐺 =
∏𝑑

𝑘=1 𝑚𝑘, 𝝁𝑗 = [𝜇𝑖𝑘 ,𝑘], 𝜮𝑗 = [𝜎2𝑖𝑘 ,𝑘]

𝑗 =
𝑑−1
∑

𝑘=1
(𝑖𝑘 − 1)

𝑑
∏

𝑙=𝑘+1
𝑚𝑙 + 𝑖𝑑 , 1 ≤ 𝑗 ≤ 𝑁𝐺 , (18)

𝐺(𝐱,𝝁𝑗 ,𝜮𝑗 ) =
𝑑
∏

𝑘=1
𝑔(𝑥𝑘, 𝜇𝑖𝑘 ,𝑘, 𝜎𝑖𝑘 ,𝑘), (19)

�̂�𝑗 =
𝑚1
∑

𝑖1=1

𝑚2
∑

𝑖2=1
…

𝑚𝑑
∑

𝑖𝑑=1
𝑤𝑑

𝑖𝑑1

(𝑑−1
∏

𝑘=1
𝑤𝑘

𝑖𝑘𝑖𝑘+1

)

. (20)

The output of SGNN shares the same form as that of GRBFNN
in Eq. (6), i.e. a weighted sum of Gaussian neurons. In fact, any
solution of SGNN can be found to be an equivalent solution of GRBFNN.
However, the reverse is not true. For the details of the mathematical
properties of SGNN, the reader is referred to [40].

3.3. The SGNN solution of FPK equation

Recall that the normalization condition (5) of PDFs is defined in 𝐑𝑑 .
In computations, the domain of interest 𝐷 is chosen to be finite and
large enough such that the normalization condition is replaced with
the integration in 𝐷,

∫𝐷
�̄�(𝐱,𝐰)𝑑𝐱 = 1. (21)

In addition, an artificial boundary condition can be imposed to
avoid the loss of probability out of the finite domain 𝐷, which means

�̄�(𝐱,𝐰) = 0,∀𝐱 ∉ 𝐷 (22)

Consider a finite rectangular domain 𝐷 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2]⋯ [𝑎𝑑 , 𝑏𝑑 ].
Impose the artificial boundary condition to the SGNN solution. We have

𝑁𝐺
∑

𝑗=1
�̂�𝑗𝐺(𝐱,𝝁𝑗 ,𝜮𝑗 ) = 0,∀𝐱 ∉ 𝐷. (23)

A more strict sufficient condition for the artificial boundary condition
reads

𝐺(𝐱,𝝁𝑗 ,𝜮𝑗 ) = 0,∀𝐱 ∉ 𝐷, 1 ≤ 𝑗 ≤ 𝑁𝐺 . (24)

Consider a 𝑑 dimensional problem and define the so-called 3 − 𝜎
domain such that over 99.7% probability of the Gaussian function is
contained in the domain denoted as 𝐷𝑗 .

𝐷𝑗 = {𝐱 ∣ ‖𝑥𝑘 − 𝜇𝑗,𝑘‖ ≤ 3𝜎𝑗,𝑘, 1 ≤ 𝑘 ≤ 𝑑} (25)
= [𝜇𝑗,1 − 3𝜎𝑗,1, 𝜇𝑗,1 + 3𝜎𝑗,1] ×⋯ × [𝜇𝑗,𝑑 − 3𝜎𝑗,𝑑 , 𝜇𝑗,𝑑 + 3𝜎𝑗,𝑑 ].

Let 𝐷𝐺 = ∪𝑗𝐷𝑗 . We make sure that 𝐷𝑗 ⊆ 𝐷 for all 𝑗 and 𝐷𝐺 ⊆ 𝐷. Hence,
we have
‖

‖

‖

‖

𝜇𝑗,𝑘 −
𝑎𝑘 + 𝑏𝑘

2
‖

‖

‖

‖

+ 3𝜎𝑗,𝑘 ≤
𝑏𝑘 − 𝑎𝑘

2
, 1 ≤ 𝑗 ≤ 𝑚𝑘, 1 ≤ 𝑘 ≤ 𝑑. (26)

These conditions make the boundary condition (22) automatically sat-
isfied. When the condition (26) holds, we have

∫𝐷
𝐺(𝐱,𝝁𝑗 ,𝜮𝑗 )𝑑𝐱 = 1, 1 ≤ 𝑗 ≤ 𝑁𝐺 . (27)

Hence, the normalization in terms of the coefficients reads
𝑁𝐺
∑

𝑗=1
�̂�𝑗 =

𝑚1
∑

𝑖1=1

𝑚2
∑

𝑖2=1
…

𝑚𝑑
∑

𝑖𝑑=1
𝑤𝑑

𝑖𝑑1

(𝑑−1
∏

𝑘=1
𝑤𝑘

𝑖𝑘𝑖𝑘+1

)

= 1. (28)
This is to compare with Eq. (9).
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Fig. 2. The structure of an SGNN with 𝑑 hidden layers. 𝐱 = [𝑥1 , 𝑥2 ,… , 𝑥𝑑 ]𝑇 is the network input. 𝑚𝑘 (𝑘 = 1, 2,… , 𝑑) represent the number of neurons in the 𝑘th hidden layer. 𝑤𝑘
𝑖𝑗

𝑘 = 1, 2,… , 𝑑 −1) denote the weights between the 𝑘th and (𝑘+1)th hidden layer. 𝑤𝑑
𝑖𝑗 denote the weights between the last hidden layer and the output layer. 𝑔𝑘𝑖 (𝑥𝑘) = 𝑔(𝑥𝑘 , 𝜇𝑖,𝑘 , 𝜎𝑖,𝑘)

here 𝑘 = 1, 2,… , 𝑑 and 𝑖 = 1, 2,… , 𝑚𝑘, which represent the Gaussian activation function of the 𝑖th neuron in the 𝑘th hidden layer.
E

𝑘
s
d
𝑝

𝑝

.4. Loss function

The loss function for solving the FPK equation by the SGNN is
efined as,
𝑆 (𝜽) = 𝜆1𝐸

𝑆
1 + 𝜆2𝐸

𝑆
2 + 𝜆3𝐸

𝑆
3 , (29)

here

𝑆
1 = 1

𝑁𝑠

𝑁𝑠
∑

𝑖=1

|

|

|

𝐹𝑃𝐾
(

�̄�(𝐱𝑖,𝐰)
)

|

|

|

2
, 𝐱𝑖 ∈ 𝐷, (30)

𝐸𝑆
2 =

|

|

|

|

|

|

∑

∀𝑗
�̂�𝑗 − 1

|

|

|

|

|

|

2

, (31)

𝐸𝑆
3 =

𝑑
∑

𝑘=1

𝑚𝑘
∑

𝑗=1
ReLU

(

‖

‖

‖

‖

𝜇𝑗,𝑘 −
𝑎𝑘 + 𝑏𝑘

2
‖

‖

‖

‖

+ 3𝜎𝑗,𝑘 −
𝑏𝑘 − 𝑎𝑘

2

)2
, (32)

where 𝐸𝑆
1 , 𝐸𝑆

2 , and 𝐸𝑆
3 represent the losses of the SGNN solution �̄�(𝐱,𝐰)

with respect to the FPK equation, the normalization condition and the
boundary condition, respectively. 𝜆𝑖 (𝑖 = 1, 2, 3) are the weights to be
determined. 𝜽 = [𝑤𝑘

𝑖𝑗 ;𝜇𝑖,𝑘; 𝜎𝑖,𝑘] denote all the trainable parameters.
Later in the paper, we somewhat arbitrarily choose 𝜆1 = 10, 𝜆2 = 1,

and 𝜆3 ∈ [1, 20]. These weights are certainly not optimal. To find
optimal values for the weights is an optimization problem, which is
a topic for another paper.

3.5. Computational issues

We apply the stochastic gradient descent algorithm Adam with a
learning rate 𝛼 = 10−3 to train SGNN with mini-batches. This selection
of the learning rate for the Adam algorithm is common in machine
learning. It strikes a balance between computational accuracy and
speed of convergence, and has been validated in diverse applications. It
works because the Adam algorithm adaptively adjusts the learning rate
in iterations based on momentum and second raw moment, making the
learning less sensitive to the initial value of the learning rate.

We have found that the mini-batch approach is quite effective with
SGNN for the FPK equation. The initial weights 𝑤𝑘

𝑖𝑗 are randomly
generated following a standard Gaussian distribution with zero mean
and unit variance. This is a common choice and has been proven helpful
4

for searching global optimal solutions in many numerical experiments.
To ensure good convergence of SGNN, the initial means and stan-
dard deviations of Gaussian neurons should satisfy the boundary con-
dition (26). The initial means are uniformly distributed along each
dimension of the domain 𝐷𝐺 ⊂ 𝐷. The initial standard deviations are
set as the distance between two adjacent centers of Gaussian neurons.
The Latin hypercube sampling (LHS) method is employed to perform
sampling over the domain 𝐷𝑠 = 𝐷 [42].

Algorithm 1 shows the process of the proposed SGNN method for
solving the FPK equation.

Algorithm 1 The SGNN method for the FPK equation.
Require: The FPK equation 𝐹𝑃𝐾 [𝑝(𝐱, 𝑡|𝐱0, 𝑡0)], the domain of interest

𝐷, the number of neurons 𝑚𝑘 in each layer, the number of sampling
points 𝑁𝑠, the size of mini-batch 𝑁𝑏, maximum number of iterations
,

nsure: The probability density function 𝑝(𝐱)
1: Initialize SGNN undetermined parameters 𝜽
2: Sample 𝑁𝑠 points in 𝐷
3: Divide the set of sampling points into 𝑁𝑠∕𝑁𝑏 mini-batches
4: for iteration 𝑖 = 1 to  do
5: for iteration 𝑗 = 1 to 𝑁𝑠∕𝑁𝑏 do
6: Take the 𝑗th mini-batch to calculate the loss function 𝑆

and the gradient 𝜕𝑆∕𝜕𝜽
7: Update 𝜽 by the Adam algorithm
8: end for
9: end for

3.6. Marginal probability density from the SGNN solution

We introduce a systematic way to compute marginal probability
density functions for arbitrary sub-set of state variables from the SGNN
solution.

Let 𝐤 = {𝑘1, 𝑘2,… , 𝑘𝑛} denote the set of indices such that 𝑛 < 𝑑 and
1 < 𝑘2 … < 𝑘𝑛. We project the PDF solution to any 𝑛-dimensional
ubspace 𝐱𝑛 = [𝑥𝑘1 , 𝑥𝑘2 ,⋯ , 𝑥𝑘𝑛 ]. Let 𝐫 = [𝑥𝑖], 𝑖 ∉ 𝐤 be a (𝑑 − 𝑛)-
imensional vector. Rewrite the 𝑑-dimensional PDF solution as 𝑝(𝐱) =
(𝐱𝑛, 𝐫).

The projection 𝑝𝐤(𝐱𝑛) is calculated as

𝐤(𝐱𝑛) = 𝑝(𝐱𝑛, 𝐫)𝑑𝐫 (33)
∫R𝑑−𝑛
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Fig. 3. The comparison of the PDF solution obtained by the SGNN method and MCS of the 2D Van der Pol system. The error as defined in Eq. (40) is 𝐽 1,2
𝑀𝐶 = 1.9 × 10−2.
Fig. 4. The marginal PDFs of 𝑝(𝑥1) and 𝑝(𝑥2) of the 2D Van der Pol system.
Fig. 5. The semi-logarithmic plots of marginal PDFs 𝑝(𝑥1) and 𝑝(𝑥2) of the 2D Van der Pol system.
This numerical integration in high-dimensional state space is time-
consuming. However, in the proposed method, it can be computed
analytically by taking advantage of the radial form of the Gaussian
functions in SGNN. We can show that

𝑝𝐤(𝐱𝑛) =
𝑚1
∑

𝑖1=1

𝑚2
∑

𝑖2=1
…

𝑚𝑑
∑

𝑖𝑑=1
𝑤𝑑

𝑖𝑑1

(𝑑−1
∏

𝑘=1
𝑤𝑘

𝑖𝑘𝑖𝑘+1

) 𝑛
∏

𝑙=1
𝑔(𝑥𝑘𝑙 , 𝜇𝑖𝑘𝑙 ,𝑘𝑙 , 𝜎𝑖𝑘𝑙 ,𝑘𝑙 )

=
∑

�̄�𝐤 ⋅ �̄�𝐤 (34)

where ⋅ denotes the inner product, �̄�𝐤 and �̄�𝐤 are 𝑛th order tensors
with the indices [𝑚𝑘1 , 𝑚𝑘2 ,… , 𝑚𝑘𝑛 ] defined as,

�̄�𝐤(𝑖𝑘1 ,… , 𝑖𝑘𝑛 ) =
𝑚1
∑

…
𝑚𝑘1−1
∑

𝑚𝑘1+1
∑

…
𝑚𝑑
∑

𝑤𝑑
𝑖𝑑1

(𝑑−1
∏

𝑤𝑘
𝑖𝑘𝑖𝑘+1

)

(35)
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𝑖1=1 𝑖𝑘1−1=1 𝑖𝑘1+1=1 𝑖𝑑=1 𝑘=1
�̄�𝐤(𝑖𝑘1 ,… , 𝑖𝑘𝑛 ) =

[ 𝑛
∏

𝑙=1
𝑔(𝑥𝑘𝑙 , 𝜇𝑖𝑘𝑙 ,𝑘𝑙 , 𝜎𝑖𝑘𝑙 ,𝑘𝑙 )

]

(36)

Introduce a matrix notation 𝐖𝑖,𝑗 ∈ R𝑚𝑖×𝑚𝑗 as the product of a series
of the weight matrices of the connecting layers,

𝐖𝑖,𝑗 =

{

𝐖𝑖𝐖𝑖+1 …𝐖𝑗 if 𝑖 ≤ 𝑗
1 if 𝑖 > 𝑗

(37)

Thus, the tensor �̄�𝐤 can be expressed in terms of 𝐖𝑖,𝑗 ,

�̄�𝐤(𝑖𝑘1 ,… , 𝑖𝑘𝑛 ) =

[ 𝑚1
∑

𝑤1,𝑘1
𝑖1 ,𝑖𝑘1

] 𝑛
∏

𝑤𝑘𝑙 ,𝑘𝑙+1
𝑖𝑘𝑙 ,𝑖𝑘𝑙+1

[ 𝑚𝑑
∑

𝑤𝑘𝑛 ,𝑑
𝑖𝑘𝑛 ,𝑖𝑑

]

. (38)

𝑖1=1 𝑙=2 𝑖𝑑=1
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Fig. 6. The loss function of the 2D Van der Pol system.

4. Examples

In this section, three examples with distinct features are presented
to demonstrate the versatility and efficiency of the SGNN method in
solving the FPK equation of nonlinear stochastic systems, especially for
high-dimensional systems. The examples include systems in 2, 4 and 6
dimensional state space.

Two distinct types of errors are defined as measures to evaluate the
accuracy of the SGNN solution. The first is the root mean square error
6

of the FPK equation given by:

𝐽𝐹𝑃𝐾 =

√

∫R𝑑
|𝐹𝑃𝐾

(

�̄�(𝐱)
)

|

2𝑑𝐱. (39)

Note that we have dropped the dependence of the PDF on 𝜽 for brevity
from now on.

The joint PDFs obtained by SGNN are compared with the results
from MCS. For the sake of easy illustration, we consider second order
joint PDFs 𝑝(𝑥𝑘1 , 𝑥𝑘2 ). The difference of the joint PDFs obtained by
SGNN and the MCS results is taken as the second error.

𝐽𝑘1 ,𝑘2
𝑀𝐶 =

√

∫R2
|�̄�(𝑥𝑘1 , 𝑥𝑘2 ) − 𝑝𝑀𝐶 (𝑥𝑘1 , 𝑥𝑘2 )|

2𝑑𝑥𝑘1𝑑𝑥𝑘2 (40)

where 𝑝𝑀𝐶 (𝑥𝑘1 , 𝑥𝑘2 ) denotes the PDF computed from MCS. This error
is more appropriate for low-dimensional problems because the needed
sample size by MCS is manageable.

4.1. Van der Pol system

The Van der Pol system, which arises in various fields of physics
and engineering, resides in a 2D state space. The governing equation
of a strongly nonlinear SDOF Van der Pol system excited by Gaussian
white noise reads,
𝑑𝑋1
𝑑𝑡

= 𝑋2,

𝑑𝑋2
𝑑𝑡

= −𝛽(𝑋2
1 − 1)𝑋2 −𝑋1 +𝑊1(𝑡), (41)

where 𝑊1(𝑡) represents the Gaussian white noise excitation with inten-
sity 2𝐷 . The drift and diffusion terms of the reduced FPK equation are
1
Fig. 7. The marginal steady-state joint PDFs of system (43). First row: 𝑥1 − 𝑥2 sub-space. Second row: 𝑥1 − 𝑥3. Third row: 𝑥3 − 𝑥4. Left column: The SGNN results. Right column:
MCS results.
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Fig. 8. The comparison of the single-variant marginal PDF solutions obtained by the SGNN method and MCS of system (43). Black solid line: SGNN. Red dashed line: MCS. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. The semi-logarithmic plots of marginal PDFs 𝑝(𝑥1) and 𝑝(𝑥2) of the 2-DOF nonlinear system.
shown as follows,

𝐴1 = 𝑥2, 𝐵22 = 2𝐷1,

𝐴2 = −𝛽(𝑥21 − 1)𝑥2 − 𝑥1. (42)

This strongly nonlinear Van der Pol system is often used as a
benchmark to examine the effectiveness of solution methods due to
its typical difficulty in the study of stochastic analysis. The analytical
solution of the reduced FPK equation of the Van der Pol system (41)
has not been reported. The RBFNN method has been demonstrated to
be effective in obtaining the steady-state PDF of this strongly nonlinear
Van der Pol system [36]. The number of neurons required by the
RBFNN method to compute the accurate solution is reported to be
10 201 in the early study [36], and is reduced to 2812 with an improved
algorithm [39].

Let 𝛽 = 1.5 and 𝐷1 = 0.25. The region of initial centers is selected
to be 𝐷𝐺 = [−6, 6] × [−6, 6]. The region of sampling points is 𝐷𝑠 =
[−7.5, 7.5] × [−7.5, 7.5]. We set the weights in the loss function as 𝜆1 =
10, 𝜆2 = 1 and 𝜆3 = 1. For this 2D system, the neural networks have
two hidden layers and 61 neurons in each hidden layer. The initial
centers are evenly distributed in each dimension and initial widths
are set as the distance between two adjacent centers, resulting in a
total of 2 × 61 = 122 neurons, significantly fewer than the 2812
neurons reported before. The number of data points of the training set
is 𝑁 = 8192 × 64. The mini-batch size for training is 𝑁 = 1024.
7

𝑠 𝑏
Fig. 10. The variation of the loss function of the 4D system (43) during training. In the
training process, the boundary condition is always satisfied, resulting in the boundary
loss being zero, which is not shown in the figure.

Fig. 3 shows the comparison between the SGNN solution obtained
after 500 iteration with the MCS solution with 108 samples. Errors for
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Fig. 11. The marginal steady-state joint PDFs of system (45). First row: 𝑥1 − 𝑥2 sub-space. Second row: 𝑥1 − 𝑥3. Third row: 𝑥4 − 𝑥5. Fourth row: 𝑥4 − 𝑥6. Left column: The SGNN
results. Right column: MCS results.
the FPK equation, normalization condition, and boundary condition
are 3.7233 × 10−3, 1.4702 × 10−5, and 3.9916 × 10−5, respectively. The
RMS error between joint PDF 𝑝(𝑥1, 𝑥2) obtained by SGNN and MCS are
1.9× 10−2. The good agreement between SGNN results and MCS results
speaks highly the effectiveness of this method.

Fig. 4 shows the marginal probability densities 𝑝(𝑥1) and 𝑝(𝑥2) of
the 2D Van der Pol system. Fig. 5 shows the same results in semi-
logarithmic scale. The SGNN solution and simulation results agree well
in the small probability region. We should point out that the current
settings of the SGNN method for this and other examples are focused
on the global solution of the PDF in the entire state space. As a result,
the SGNN solution in the high probability region tends to agree with
the simulation results better than the solution in the small probability
region where both the SGNN solution and the simulation results can
have higher variance error. Should the focus is on the small probability
in the tail region, different sampling strategies for SGNN and simulation
can be explored to improve the accuracy. This is a topic for another
study.
8

Fig. 6 shows the loss during the training process. Throughout the
training process, the boundary conditions remain consistently satisfied,
while the normalization condition and the FPK equation gradually
converge. The total training time for 500 iterations is 6020 s. However,
it is significant to note that the loss function converges after 100
iterations within 1223 s. In contrast, the MCS solution with 108 samples
requires 1400 s to complete.

4.2. A 4D nonlinear system

As the second example, we consider a two-DOF nonlinear system
under Gaussian white noises.
𝑑𝑋1
𝑑𝑡

= 𝑋2,

𝑑𝑋2
𝑑𝑡

= −(−𝛼11 + 𝛼12𝑋
2
2 )𝑋2 − 𝜔2

1𝑋1 − 𝛽1𝑋4 +𝑊1(𝑡),

𝑑𝑋3 = 𝑋 , (43)

𝑑𝑡 4
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Fig. 12. The comparison of the single-variant marginal PDF solutions obtained by the SGNN method and MCS of system (45). Black solid line: SGNN. Red dashed line: MCS. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. The semi-logarithmic plots of marginal PDFs 𝑝(𝑥1) and 𝑝(𝑥2) of system (45).
𝑑𝑋4
𝑑𝑡

= −(−𝛼21 + 𝛼22𝑋
2
4 )𝑋4 − 𝜔2

2𝑋3 + 𝛽2𝑋2 +𝑊2(𝑡).

where 𝜔1 = 1.0, 𝜔2 =
√

2, 𝛼11 = 𝛼21 = −0.06, 𝛼12 = 𝛼22 = 0.08 and
𝛽1 = 𝛽2 = 0.01. 𝑊1(𝑡) and 𝑊2(𝑡) are independent Gaussian white noise
excitations with intensity 𝐷1 = 𝐷2 = 0.1. The drift and diffusion terms
of the reduced FPK equation are given by,

𝐴1 = 𝑥2, 𝐴3 = 𝑥4,

𝐴2 = −(−𝛼11 + 𝛼12𝑥
2
2)𝑥2 − 𝜔2

1𝑥1 − 𝛽1𝑥4,

𝐴4 = −(−𝛼21 + 𝛼22𝑥
2
4)𝑥4 − 𝜔2

2𝑥3 + 𝛽2𝑥2, (44)
𝐵22 = 2𝐷1, 𝐵44 = 2𝐷2.

The domain where the Gaussian neurons reside is 𝐷𝐺 = [−1.6, 1.6]4.
The region for sampling points is 𝐷𝑠 = [−2.4, 2.4]4. The weights in the
loss function are chosen as 𝜆1 = 10, 𝜆2 = 1 and 𝜆3 = 10. The SGNN
has 4 hidden layers and 41 neurons in each hidden layer, leading to a
total of 4 × 41 = 164 neurons. The number of trainable parameters is
9

2 × 4 × 41 + (4 − 1) × 412 = 5371. The total number of training data is
𝑁𝑠 = 8192 × 1024. The mini-batch size is 𝑁𝑏 = 1024 × 8. Thus, there are
1024 updates of training parameters in each iterations.

The steady-state PDF solutions projected into different sub-spaces of
the 4D stochastic system (43) obtained by the SGNN method after 30
iterations are shown in Fig. 7 together with the MCS results obtained
with 109 samples. The RMS error of the FPK equation is 1.04 × 10−4.
The RMS errors defined in Eq. (40) of joint PDFs 𝑝(𝑥1, 𝑥2), 𝑝(𝑥1, 𝑥3) and
𝑝(𝑥3, 𝑥4) are 1.81 × 10−2, 1.57 × 10−2 and 2.26 × 10−2, respectively.

Fig. 8 shows the marginal probability densities of 𝑝(𝑥1), 𝑝(𝑥2), 𝑝(𝑥3)
and 𝑝(𝑥4). Fig. 9 shows the same results of 𝑝(𝑥1) and 𝑝(𝑥2) in semi-
logarithmic scale. The results by the SGNN and MCS agree well in the
region of small probabilities.

The SGNN solution closely matches the MCS results demonstrating
the effectiveness of this method. The variation of the loss function
during network training is shown in Fig. 10. The total training time for
30 iterations is 7626 s. In contrast, the MCS solution with 109 samples
requires 14 605 s to complete.
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Fig. 14. The variation of the loss function of the 6D system (45) during training.

4.3. A 6D nonlinear system

Consider a three-DOF coupled Duffing system governed by
𝑑𝑋1
𝑑𝑡

= 𝑋2,

𝑑𝑋2
𝑑𝑡

= −𝜔2
1𝑋1 − 𝛼11𝑋

3
1 − 𝛼12𝑋

2
1𝑋3 − 𝛼13𝑋

2
1𝑋5 + 𝛽11𝑋2 + 𝛽12𝑋3

+ 𝛽13𝑋5 +𝑊1(𝑡),
𝑑𝑋3
𝑑𝑡

= 𝑋4,

𝑑𝑋4
𝑑𝑡

= −𝜔2
2𝑋3 + 𝛼21𝑋

3
1 − 𝛼22𝑋

3
3 + 𝛽21𝑋1 − 𝛽22𝑋4 +𝑊2(𝑡), (45)

𝑑𝑋5
𝑑𝑡

= 𝑋6,

𝑑𝑋6
𝑑𝑡

= −𝜔2
3𝑋5 + 𝛼31𝑋

3
1 − 𝛼32𝑋

3
5 + 𝛽31𝑋1 − 𝛽32𝑋6 +𝑊3(𝑡),

here 𝜔1 = 0.2, 𝜔2 = 0.4, 𝜔3 = 0.4, 𝛼11 = 0.3, 𝛼12 = −0.06, 𝛼13 = −0.06,
21 = 0.04, 𝛼22 = 0.5, 𝛼31 = 0.04, 𝛼32 = 0.5, 𝛽11 = −0.2, 𝛽12 = 0.15,
13 = 0.15, 𝛽21 = 0.3, 𝛽22 = 0.2, 𝛽31 = 0.3 and 𝛽32 = 0.2. 𝑊𝑖(𝑡)
epresent independent Gaussian white noise excitations with intensity
1 = 𝐷2 = 0.05. The drift and diffusion terms of the reduced FPK

equation are given by,

𝐴1 = 𝑥2, 𝐴3 = 𝑥4, 𝐴5 = 𝑥6,

𝐴2 = −𝜔2
1𝑥1 − 𝛼11𝑥

3
1 − 𝛼12𝑥

2
1𝑥3 − 𝛼13𝑥

2
1𝑥5

+ 𝛽11𝑥2 + 𝛽12𝑥3 + 𝛽13𝑥5,

𝐴4 = −𝜔2
2𝑥3 + 𝛼21𝑥

3
1 − 𝛼22𝑥

3
3 + 𝛽21𝑥1 − 𝛽22𝑥4, (46)

𝐴6 = −𝜔2
3𝑥5 + 𝛼31𝑥

3
1 − 𝛼32𝑥

3
5 + 𝛽31𝑥1 − 𝛽32𝑥6,

𝐵22 = 2𝐷1, 𝐵44 = 2𝐷2, 𝐵66 = 2𝐷3.

The domain to place the Gaussian neurons is 𝐷𝐺 = [−2, 2]6. The
region of sampling points is 𝐷𝑠 = [−2.5, 2.5]6. The weights for the loss
are 𝜆1 = 10, 𝜆2 = 1 and 𝜆3 = 10. The SGNN has 6 hidden layers with 41
neurons in each hidden layer. A total number of neurons is 6×41 = 246.
The number of trainable parameters is 2 × 6 × 41 + (6 − 1) × 412 = 8897.
The total training data is 𝑁𝑠 = 8192 × 1024. We choose the mini-batch
size as 𝑁𝑏 = 1024 × 8.

The marginal steady-state PDF solutions of the 4D stochastic system
(45) obtained by the SGNN method after 130 iterations and by MCS
with 109 samples are shown in Figs. 11 and 12. The RMS error of the
FPK equation is 1.25×10−4. The RMS errors defined in (40) of joint PDFs
𝑝(𝑥1, 𝑥2), 𝑝(𝑥1, 𝑥3), 𝑝(𝑥4, 𝑥5) and 𝑝(𝑥4, 𝑥6) are 2.86 × 10−2, 2.46 × 10−2,
1.78 × 10−2 and 3.73 × 10−2, respectively. To show the details of the
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solution at the tail end, we show two marginal PDFs 𝑝(𝑥1) and 𝑝(𝑥2) in
logarithmic scale in Fig. 13. The variation of the loss function during
the training process is shown in Fig. 14.

The total training time for 130 iterations is 75 184 s. In contrast,
the MCS solution with 109 samples requires 19 743 s to complete. The
CPU time of MCS is less than that of the SGNN method, because the
simulation is done in the subspace of the marginal probability density.
109 samples used by MCS are only sufficient to yield projections of
the high-dimensional PDF in the low-dimensional subspace and are
insufficient to obtain accurate PDF in the high-dimensional state space.
By contrast, the SGNN delivers a semi-analytical solution of the PDF in
the entire high-dimensional state space.

To illustrate this point further, we present Fig. 15 to show a com-
parison of a marginal PDF 𝑝(𝑥1, 𝑥2) between the SGNN and MCS results
with 109 samples. The simulation is carried out in the 𝑥1 − 𝑥2 subspace
with 𝑥3 = 𝑥4 = 𝑥5 = 𝑥6 = 0. It is apparent that much more sample
points are needed for the MCS to deliver an accurate PDF.

Remark

A remark is in order regarding the comparison of SGNN with
GRBFNN and other deep neural networks. Extensive numerical exper-
iments have been done in [40] to compare the prediction, modeling
performance and computational efficiency of SGNN with GRBFNN and
deep neural networks with ReLu activation functions. It is found that
for various complex functions in low and high-dimensional space,
SGNN consistently outperforms GRBFNN and other deep neural net-
works in terms of the combined measure of accuracy and efficiency.
For this reason, we shall not present comparison of FPK solutions by the
SGNN method with those by GRBFNN and other deep neural networks.

5. Discussions

5.1. Comparison of SGNN with GRBFNN

The solutions obtained from SGNN and GRBFNN share identical
forms. However, the most significant distinction between them lies in
the substantial difference in the number of neurons and trainable pa-
rameters under the same spatial partition. For a 𝑑-dimensional system,
assuming that 𝑚1 = 𝑚2 ⋯ = 𝑚𝑑 = 𝑁 , the number of neurons and
trainable parameters for the GRBFNN solution are 𝑁𝑑 and 3𝑁𝑑 , respec-
tively. In contrast, for the SGNN solution, these numbers are 𝑑𝑁 and
(𝑑−1)𝑁2 +2𝑑𝑁 , respectively. Compared to GRBFNN, SGNN employs a
number of neurons and trainable parameters that increase linearly with
dimensionality, making it more suitable for high-dimensional problems.

5.2. Comparison of SGNN with ANN

In solving the FPK equation, traditional neural networks face a
major challenge because the normalization condition can only be com-
puted through numerical integration in the high-dimensional state
space. Consequently, this precludes the utilization of mini-batch meth-
ods to accelerate training. For instance, Zhang et al. computed a linear
3D system using a network with 7 hidden layers, each containing
20 neurons, resulting in a computational time of 11 298.2 s [43]. In
contrast, the SGNN, employing 3 hidden layers with 20 neurons each,
achieved accurate results in merely 220 s.

6. Conclusions

This paper introduces a novel approach of SGNN to obtain the
steady-state PDF of the reduced FPK equation of high-dimensional non-
linear stochastic systems. SGNN lets all unit-variant Gaussian neurons
distributed in a region of a single state variable form a hidden layer,
such that the number of hidden layers is equal to the dimension of the
state space. The output of SGNN is a subset of that of a corresponding

GRBFNN and is close to the true output of GRBFNN when the Hessian
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Fig. 15. The steady-state PDF of system (45) on the 𝑥1 − 𝑥2 with 𝑥3 = 𝑥4 = 𝑥5 = 𝑥6 = 0. Left: The SGNN result. Right: MCS results.
matrix of SGNN captures all the dominant eigenvalues of the Hessian
matrix of GRBFNN [40]. The loss function used to train the neural
networks consists of the residual of the FPK equation, the normaliza-
tion condition and the boundary condition. Because the normalization
condition and boundary condition directly impose constraints on the
trainable parameters, the corresponding losses converge quickly in the
training process. The choice of the normalized Gaussian functions as
neurons removes the need for numerical integration when the marginal
PDFs in arbitrary subspace are computed. We have developed the gen-
eral expression for easy creation of marginal PDFs of any order. Three
examples of complex nonlinear dynamic systems have been studied to
illustrate the effectiveness of the proposed SGNN method in solving
high-dimensional FPK equations. Extensive Monte Carlo simulations
have been carried out to check the accuracy of the proposed method.
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